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Abstract. Recently two-loop electroweak corrections to the neutral current four-fermion processes at high
energies have been presented. The basic ingredient of this calculation is the evaluation of the two-loop cor-
rections to the Abelian vector form factor in a spontaneously broken SU(2) gauge model. Whereas the final
result and the derivation of the four-fermion cross sections from evolution equations have been published
earlier, the calculation of the form factor from the two-loop Feynman diagrams is presented for the first time
in this paper. We describe in detail the individual contributions to the form factor and their calculation with
the help of the expansion by regions method and Mellin–Barnes representations.

1 Introduction

Electroweak higher order corrections in the high energy
Sudakov regime [1, 2] have recently attracted a new wave
of interest [3–34]. At the upcoming colliders, the LHC
and an International Linear Collider, for the first time the
characteristic energies

√
s of the partonic processes will

be far larger than the masses of the W - and Z-bosons,
MW,Z. In view of the expected experimental accuracy, one
has to take into account radiative corrections at the two-
loop level which are enhanced by up to four powers of the
large electroweak logarithm ln(s/M2W,Z). These are present
in virtual corrections to exclusive reactions like electron–
positron or quark–antiquark annihilation into a pair of
fermions or gauge bosons.
For the high energy behaviour of the neutral current

four-fermion processes the analysis of the leading loga-
rithms (LL) in [8] was extended to the next-to-leading
(NLL) and next-to-next-to-leading logarithmic (NNLL)
level in [9–12]. With the help of evolution equations which
describe the dependence of the amplitude on the energy,
the logarithmic corrections were resummed to all orders
in perturbation theory in NNLL accuracy. Neglecting the
fermion masses and the mass difference between the W -
and Z-boson, the logarithmically enhanced part of the
two-loop corrections to the total cross section and to vari-
ous asymmetries was obtained including the lnn(s/M2W,Z)
terms with n= 4, 3, 2. The results up to NLL accuracy have
been confirmed by explicit one-loop [5, 15, 17, 18] and two-
loop [20, 21, 23, 26] calculations.
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For energies in the TeV region the subleading logarith-
mic contributions are comparable in size to the leading
terms due to their large numerical coefficients. Thus the
calculation of the remaining two-loop linear logarithms is
necessary to control the convergence of the logarithmic ex-
pansion. These corrections represent the next-to-next-to-
next-to-leading logarithmic (N3LL) contributions. In con-
trast to the higher powers of the electroweak logarithm,
they are sensitive to the details of the gauge boson mass
generation, in particular they depend on the Higgs boson
mass MH. Thanks to the evolution equations, the NNLL
calculation involves only massless Feynman diagrams at
the two-loop level. But the linear two-loop logarithm re-
quires the evaluation of vertex corrections with the true
masses of the gauge bosons and the Higgs boson.
In [22, 27, 33, 34] the previous analysis is extended to

N3LL accuracy. The application of the evolution equa-
tion approach to the linear two-loop logarithm and the
necessary ingredients are described in detail in [34]. From
the viewpoint of loop calculations, the most complicated
contributions are the massive two-loop corrections to the
Abelian vector form factor which will be defined in Sect. 2.
In [33, 34] the form factor results are used together with
the evolution equations to obtain the N3LL two-loop
corrections to the four-fermion scattering amplitude in
a spontaneously broken SU(2) gauge model. The addi-
tional infrared-divergent electromagnetic contributions are
separated according to the prescription developed in [27].
Finally the effect of the mass difference between the two
heavy electroweak gauge bosons W and Z is taken into
account by an expansion around the equal mase case,
whereas a value of the Higgs mass identical to MW is suf-
ficient for the desired accuracy. In this way electroweak
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corrections to the total cross section, forward–backward
asymmetries and left–right asymmetries of the neutral cur-
rent four-fermion processes are obtained including all large
two-loop logarithms and leaving an estimated theoretical
uncertainty of a few per mil to one percent for the produc-
tion of light fermions [33, 34].
This calculation and the discussion of the results are

not repeated here. The following sections are instead dedi-
cated to details of the loop calculations needed for the form
factor mentioned above. The paper is organized as follows.
In Sect. 2 the Abelian vector form factor in the sponta-
neously broken SU(2) gauge model is defined. Then Sect. 3
describes the evaluation of the two-loop vertex corrections
to the form factor. Contributions from the renormalization
of the fields, the coupling constant and the gauge boson
mass are added in Sect. 4. Finally we discuss the result
for the form factor in Sect. 5 and conclude with a sum-
mary in Sect. 6. The appendices list the Feynman rules for
the SU(2) model (Appendix A) and explain two important
methods used in our calculation: the expansion by regions
(Appendix B) and the Mellin–Barnes representation (Ap-
pendix C). At last Appendix D lists the contributions in
a theory with a mass gap which are necessary for the sep-
aration of the electromagnetic corrections.

2 The Abelian vector form factor

The Abelian vector form factor F determines the fermion
scattering in an external Abelian field. It is the factor
which multiplies the Born term FµB = ψ̄(p1)γ

µψ(p2) in the
corrections to the Abelian vector current Fµ = F (Q2)FµB,
where p1 denotes the outgoing and p2 the incoming fer-
mion momentum and Q2 =−(p1−p2)2. At high energies,
we consider the Sudakov limit [1, 2] Q2→∞, so Q2�M2

for every gauge boson or Higgs massM , we neglect fermion
masses, p21 = p

2
2 = 0, and we omit terms which are power-

suppressed by at least one factorM2/Q2.
The four-fermion amplitude A describes the neutral

current scattering ff̄ → f ′f̄ ′ of a fermion–antifermion pair
into a different fermion–antifermion pair. At high energies
and fixed angles, where all kinematical invariants are of
the same order and far larger than the gauge boson mass,
s∼ |t| ∼ |u| �M2, it can be decomposed into the form fac-
tor squared and a reduced amplitude Ã,

A=
ig2

s
F 2 Ã , (1)

where g is the weak SU(2) coupling. The collinear di-
vergences appearing in the limit of vanishing gauge bo-
son mass, M → 0, and the corresponding collinear loga-
rithms are known to factorize. They are responsible, in
particular, for the double-logarithmic contribution and de-
pend only on the properties of the external on-shell par-
ticles, but not on the specific process [35–43]. Thus, for
each fermion–antifermion pair of the four-fermion ampli-
tude the collinear logarithms are the same as for the form
factor F discussed above. The reduced amplitude Ã in (1)
therefore contains only soft logarithms (corresponding to

soft divergences in the limit M → 0) and renormalization
group logarithms. It can be determined with the help of an
evolution equation [43–45].
The decomposition of the four-fermion amplitude A

and the calculation of the reduced amplitude Ã are de-
scribed in detail in [9–12]. The NNLL approximation of
the two-loop contribution to the form factor F can be ob-
tained with the help of another evolution equation [11, 12],
whereas the N3LL result including all large logarithms re-
quires the two-loop calculations with massive gauge bosons
presented in the following sections.
The form factor is calculated as a real function of the

variable Q2 > 0, i.e. in the Euclidean region. For its ap-
plication to the four-fermion amplitude described above,
the analytic continuation to the Minkowskian region s > 0
according to Q2 =−(s+ i0), where i0 denotes an infinites-
imal positive imaginary part, leads to the substitution
ln(Q2/M2) = ln(s/M2)− iπ.
The calculation is performed in a spontaneously broken

SU(2) gauge model. Reference [34] discusses in detail all
effects resulting from the difference of this model with re-
spect to the standard model of particle physics, where the
isospin SU(2) group for left-handed fermions is mixed with
the hypercharge U(1) group through the mass eigenstates
of the Z-boson and the photon.
In contrast to the standard model particles W± and

Z, we work with the neutral SU(2) gauge bosons W a,
a = 1, 2, 3, which all have the same mass M =MW. The
generators of an SU(N) gauge group in the fundamen-
tal representation are labelled ta. Their Lie algebra in-
volves the structure constants fabc. The Casimir opera-
tors of the fundamental and the adjoint representation are
CF = (N

2−1)/(2N) andCA =N , respectively. In addition
TF = 1/2 is needed. In the special case of an SU(2) group
the generators ta correspond to half the Pauli matrices,
and fabc = εabc, CF = 3/4, CA = 2. We prefer to use the
general symbols ta, fabc, CF, CA and TF instead of their
specific SU(2) values in our calculations. This has the ad-
vantage that we can easily convert the results to the case of
the hypercharge U(1) gauge group.
The Feynman rules of the vertices needed for our cal-

culation are listed in Appendix A. We use the Feynman–
’t Hooft gauge, where the masses of Goldstone bosons and
ghost fields are equal to the gauge boson mass M and the
gauge boson propagators have the form −igµν/(k2−M2).
We work with the Lagrangian as a function of the unrenor-
malized quantities, so instead of calculating diagrams with
counter terms, we have to replace the bare mass and coup-
ling constant in the one-loop result by the corresponding
renormalized quantities as described in Sect. 4.

3 Vertex corrections

In this section the two-loop vertex corrections to the
Abelian vector form factor are presented. The Feynman
diagrams contributing to the vertex corrections are de-
picted in Figures 1, 2 and 3. Solid lines with arrows denote
fermions, wavy lines denote gauge bosons, short-dashed
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Fig. 1. Fermionic vertex correction

Fig. 2. Abelian vertex corrections

lines with arrows denote ghost fields and long-dashed lines
stand for the Higgs boson (H) or Goldstone bosons (φ), de-
pending on the labels. The graphs in Figs. 2c, d and 3a also
appear in a horizontally mirrored version, so their contri-
butions have to be counted twice.
The three figures group the Feynman diagrams in sub-

sets which are separately gauge-invariant when adding the
corresponding renormalization contributions from Sect. 4.
The fermionic contribution of the graph in Fig. 1 is propor-
tional to nf, the number of fermions running in the closed
fermion loop. Figure 2 represents the Abelian graphs
(in addition to Fig. 1) which are present also in an un-
broken U(1) theory like QED. Finally Fig. 3 shows the
non-Abelian graphs, which include the contributions from
the Higgs mechanism. The Abelian contribution only
counts the part of the graphs Fig. 2b and c which is pro-
portional to C2F. The other part of these two graphs,
which is proportional toCFCA, belongs to the non-Abelian
contribution.
The fermionic contribution has been calculated exactly

in [22], i.e. for allQ2, not onlyQ2�M2, showing the good
agreement of the Sudakov limit with the exact contribution
for energies larger than 300GeV. The high-energy asymp-

Fig. 3. Non-Abelian vertex corrections

totic limit of this result is quoted in Sect. 3.2. Note that
we state in this paper the individual vertex correction,
self-energy correction and renormalization terms, whereas
in [22] only the total fermionic contribution to the form fac-
tor is given.
The Abelian graphs have been evaluated in N4LL ap-

proximation, i.e. including all large logarithms and the
non-logarithmic constant. These calculations are presented
in Sect. 3.3 to Sect. 3.6. The non-Abelian graphs, espe-
cially Fig. 3a, are more complicated to evaluate, as they
have three massive propagators each (compared to two for
the Abelian graphs).We have only evaluated them in N3LL
accuracy as the non-logarithmic constant is not needed for
the insertion of the form factor result into the four-fermion
amplitude. The corresponding calculations can be found in
Sects. 3.7 and 3.8.

3.1 Reduction to scalar integrals

From each Feynman vertex diagram in the Figs. 1–3, by ap-
plying the Feynman rules in Appendix A, we get a vertex
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amplitude of the following form:

Fµv = ψ̄(p1)Γ
µ ψ(p2) , (2)

where ψ(p1,2) are doublets of Dirac spinors in the SU(2)
isospin space corresponding to the incoming and outgoing
fermion, and Γµ is a quadratic matrix both in the spinor
space and in the isospin space (for each Lorentz index µ).
For vanishing fermionmasses (in the Sudakov limit) the

vertex amplitudes can be written asFµv = FvF
µ
B, where F

µ
B

is the Born amplitude and Fv is a contribution to the form
factor. The scalar quantity Fv can be extracted from the
vertex amplitude by projection (see e.g. [46]):

Fv =−
Tr (γµ/p1Γ

µ/p2)

4N(d−2) p1p2
, (3)

where dimensional regularization [47] is used with d =
4–2 ε as the number of space-time dimensions, and N = 2
for SU(2). The trace runs over the spinor and the isospin
indices. By applying this projection, we get a linear com-
bination of scalar loop integrals. For convenience, we sep-
arate the integration measure as follows:

µ4−dg2
∫
ddk

(2π)d
= i
α

4π

(
µ2

M2

)ε
Sε

[
eεγE (M2)ε

∫
ddk

iπd/2

]
.

(4)

Here µ is the mass scale of dimensional regularization,
α = g2/(4π) with the weak coupling g, γE is Euler’s con-

stant and Sε = (4π)
εe−εγE . Within the MS renormaliza-

tion scheme, Sε is absorbed into µ
2ε by a redefinition of µ,

and as we set µ=M in the end, the prefactor in front of the
square brackets gets especially simple.
The reduction of the Feynman amplitudes to scalar

integrals has been performed with the computer algebra
program FORM [48], and the evaluation of the scalar inte-
grals, as described in the following sections, has been done
with Mathematica [49].
We have not performed a reduction of the scalar inte-

grals to so-called master integrals by a method like integra-
tion by parts [50, 51], as the number of scalar integrals ob-
tained from the Feynman diagrams is not too big and most
of the scalar integrals can easily be evaluated in a semi-
automatical way starting from our expressions for general
powers of the propagators, which are presented in the fol-
lowing sections.

3.2 Fermionic vertex correction

The fermionic vertex correction of Fig. 1 has been eval-
uated in [22], where the integration of the inner fermion
loop has been done first, leaving a one-loop integral feasible
by the standard Feynman parametrization technique. The
contribution of the fermionic vertex correction to the form
factor is

Fv,nf = CFTFnf
( α
4π

)2 ( µ2
M2

)2ε
S2ε

×

{
1

ε

[
4

3
L2−

20

3
L+
8

9
π2+

29

3

]
−
8

9
L3+

56

9
L2

+

(
4

9
π2−

238

9

)
L−
8

3
ζ3−

38

27
π2+

749

18

}

+O(ε)+O

(
M2

Q2

)
, (5)

where L= ln(Q2/M2), and ζ3 ≈ 1.202057 is a value of Rie-
mann’s zeta function.

3.3 Planar vertex correction

The reduction (see Sect. 3.1) of the planar Feynman graph
in Fig. 2a leads to scalar integrals corresponding to the
graph in Fig. 4.The numbers enumerate the inner propa-
gators and correspond to the indices i of the propagator
powers ni and of the inner momenta ki, the directions of
which are indicated by the arrows. Solid lines stand for
massive propagators, dashed lines for massless ones.
Apart from propagators in the denominator, one scalar

product remains in the numerator which cannot be ex-
pressed linearly in terms of the denominator. We have cho-
sen this irreducible scalar product to be 2k5(k5−k6). The
set of scalar integrals is then covered by the following func-
tion (k = k5, 	= k5−k6):

FLA(n1, ..., n7) = e
2εγE (M2)2ε (Q2)n−n7−4

×

∫
ddk

iπd/2

∫
dd	

iπd/2
(2k	)n7

(	2−2p1	)
n1 (	2−2p2	)

n2

×
1

(k2−2p1k)
n3 (k2−2p2k)

n4 (k2−M2)n5

×
1

((k− 	)2−M2)n6
, (6)

with n = n123456, where we use nij··· = ni+nj + ... as
a shorthand notation. The scalar integrals have been
defined in such a way that they do not carry a mass
dimension.
The evaluation of the scalar integrals has been per-

formed with the expansion by regions (see Appendix B).
The following regions contribute to the planar vertex cor-
rection [52]:

Fig. 4. Scalar graph for pla-
nar vertex correction
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(h-h): k ∼Q , 	∼Q

(1c-h): k ‖ p1 , 	∼Q

(2c-h): k ‖ p2 , 	∼Q

(1c-1c): k ‖ p1 , 	 ‖ p1
(2c-2c): k ‖ p2 , 	 ‖ p2
(h-s’): k ∼Q , k6 = k− 	∼M .

By k ∼Q we mean that each component of the vector k is
of the order of Q. And k ‖ pi indicates a region where the
momentum k is collinear to the external momentum pi:

k ‖ p1 ⇐⇒ k+ ∼
M2

Q
, k− ∼Q , k⊥ ∼M , (7)

k ‖ p2 ⇐⇒ k+ ∼Q , k− ∼
M2

Q
, k⊥ ∼M , (8)

where k± = (2p1,2k)/Q denotes the components of k in the
direction of p2 and p1 respectively, and the vector k⊥ = k−
(k−/Q)p1− (k+/Q)p2 is made up of the components of k
perpendicular to p1,2.
The leading term in the expansion of the (h-h) re-

gion corresponds to the massless integral with M = 0,
which is well known [53–55]. The (h-s’) region is of order
(M2/Q2)2−n6+ε and therefore suppressed by at least one
factorM2/Q2 with respect to the (h-h) region for all scalar
integrals we need, i.e. for ni ≤ 1, i= 1, ..., 6. So we do not
need to consider the (h-s’) region. The (1c-1c) region is
of order (M2/Q2)4−n1356+n7 , the (2c-2c) region of order
(M2/Q2)4−n2456+n7 . Both are suppressed if n7 > 0, i.e. if
the numerator is present, and are only evaluated for n7 = 0.
The leading contributions from the (1c-h) and (1c-1c) re-
gions can be expressed by one- and two-fold Mellin–Barnes
representations (see Appendix C):

F
(1c-h)
LA (n1, ..., n7) =

(
M2

Q2

)2−n35+ε
e−niπ e2εγE

×
Γ
(
d
2 −n3

)
Γ
(
d
2 −n16+n7

)
Γ
(
n35−

d
2

)
Γ (n1)Γ (n2)Γ (n3)Γ (n5)Γ (n6)Γ (d−n126+n7)

×

∫ i∞
−i∞

dz

2πi
Γ (−z)Γ

(
d
2 −n26− z

)

×
Γ (n6+ z)Γ (n37−n4+ z)Γ

(
n126−

d
2 + z

)
Γ
(
d
2 −n4+n7+ z

) , (9)

F
(1c-1c)
LA (n1, ..., n6, n7 = 0) =

(
M2

Q2

)4−n1356
e−niπ e2εγE

×
1

Γ (n1)Γ (n3)Γ (n5)Γ (n6)Γ (
d
2 −n24)

×

∫ i∞
−i∞

dz1
2πi

∫ i∞
−i∞

dz2
2πi

×
Γ (−z1)Γ

(
n13−

d
2 − z1

)
Γ
(
d
2 −n1+ z1

)
Γ
(
d
2 −n4+ z1

)

×Γ
(
d
2 −n24+ z1

) Γ (−z2)Γ (d2 −n35− z2
)

Γ
(
d
2 −n5− z2

)
×Γ
(
d
2 −n45− z2

)
Γ (n1356−d+ z2)Γ (n5+ z1+ z2) .

(10)

For symmetry reasons we get F
(2c-h)
LA from F

(1c-h)
LA and

F
(2c-2c)
LA from F

(1c-1c)
LA by exchanging n1↔ n2 and n3↔ n4.

The integration contour of the Mellin–Barnes integrals
runs from −i∞ to +i∞ in such a way that poles from
gamma functions of the form Γ (...+ z) lie on the left hand
side of the contour (“left poles”) and poles from gamma
functions of the form Γ (...−z) lie on the right hand side of
the contour (“right poles”).
The Mellin–Barnes integrals in (9) and (10) are solved

by closing the integration contours either at positive or
negative real infinity and summing over the residues within
the contour. The integrals develop singularities at points in
the parameter space of the ni where a left pole and a right
pole glue together in one point. Some of these singularities
are cancelled by zeros originating from gamma functions in
the denominator, e.g. in F

(1c-h)
LA when n6 = 0. Here the re-

sult is given by the limit n6→ 0 to which only the residue
of the integrand at z = 0 or z =−n6 contributes.
Other singularities in the parameter space are can-

celled between several regions. This is the case for the pole
1/(n3−n4) which is cancelled between the (1c-h) and the
(2c-h) regions. Another pole 1/(n13−n24) is cancelled be-
tween the (1c-1c) and the (2c-2c) regions. Such singular-
ities, which are regularized analytically with the param-
eters ni in individual regions, are typical for collinear re-
gions in the Sudakov limit. The sum of the contributions
from all regions is well-defined in the framework of dimen-
sional regularization.
In some cases, the first Barnes lemma (see Appendix C)

is used to solve one of the two Mellin–Barnes integrations
in (10). In more complicated cases first all residues which
produce singularities are extracted, and the limits of the
analytic regularization and of dimensional regularization
(ε→ 0) are performed before summing up the remaining
residues. These sums are then solved by Mathematica or
looked up in a summation table (e.g. in [56]).
By adding together the contributions from all regions

we have obtained the results for all scalar integrals origi-
nating from the reduction of the planar Feynman diagram.
As examples, we show the results for the scalar graph
with all propagators present and various powers of the
numerator:

FLA(1, 1, 1, 1, 1, 1, 0)=
1

24
L4+

π2

3
L2−6ζ3L+

31

180
π4 ,

(11)

FLA(1, 1, 1, 1, 1, 1, 1)=
π2

3
L−10ζ3 , (12)

FLA(1, 1, 1, 1, 1, 1, 2)=
1

2ε2
+
1

ε

(
−L+

7

2

)

+L2+

(
π2

6
−8

)
L−11ζ3
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+
π2

12
+
37

2
. (13)

Here and for all other results of individual scalar integrals,
we omit the specification “+O(ε)+O(M2/Q2)” of the
neglected terms. The result (11) has already been calcu-
lated in [57].
The complete Feynman diagram in Fig. 2a involving

contributions from all scalar integrals with different ni
yields the following planar vertex correction:

Fv,LA = C
2
F

( α
4π

)2( µ2
M2

)2ε
S2ε{

1

2ε2
+
1

ε

[
−L2+3L−

2

3
π2−

11

4

]
+
1

6
L4

+

(
2

3
π2−1

)
L2+

(
−32ζ3−π

2+
11

2

)
L

+
8

15
π4+62ζ3+

13

12
π2−

41

8

}

+O(ε)+O

(
M2

Q2

)
. (14)

3.4 Non-planar vertex correction

The non-planar Feynman graph in Fig. 2b involves the
scalar integrals depicted in Fig. 5. With the choice 2k5k6
for the irreducible scalar product, the scalar integrals are
written as

FNP(n1, ..., n7) = e
2εγE (M2)2ε (Q2)n−n7−4

×

∫
ddk

iπd/2

∫
dd	

iπd/2
(2k	)n7

((p1−k− 	)2)
n1 ((p2−k− 	)2)

n2

×
1

(k2−2p1k)
n3 (	2−2p2	)

n4 (k2−M2)n5

×
1

(	2−M2)n6
, (15)

with k = k5 and 	= k6.The following regions contribute to
the non-planar vertex correction [52, 58]:

(h-h): k ∼Q , 	∼Q

(1c-h): k ‖ p1 , 	∼Q

Fig. 5. Scalar graph for non-
planar vertex correction

(h-2c): k ∼Q , 	 ‖ p2
(1c-1c): k ‖ p1 , 	 ‖ p1
(2c-2c): k ‖ p2 , 	 ‖ p2
(1c-2c): k ‖ p1 , 	 ‖ p2
(1c-1c’): k ‖ p1 , k4 ‖ p1
(2c’-2c): k3 ‖ p2 , 	 ‖ p2

(us’-us’): k3 ∼M
2/Q , k4 ∼M

2/Q

(1c-us’): k ‖ p1 , k4 ∼M
2/Q

(us’-2c): k3 ∼M
2/Q , 	 ‖ p2 .

The leading term of the (h-h) region is known from the
massless case [53–55]. As for the planar vertex correction
in the previous section, the (1c-1c) and the (2c-2c) regions
are of order (M2/Q2)4−n1356+n7 and (M2/Q2)4−n2456+n7

respectively. They are suppressed for n7 > 0 and are there-
fore evaluated only for n7 = 0. The leading contributions
from the regions, apart from (h-h), can be written as one-
fold Mellin–Barnes integrals or simpler expressions:

F
(1c-h)
NP (n1, ..., n7) =

(
M2

Q2

)2−n35+ε
e−niπ e2εγE

×
Γ
(
d
2 −n24

)
Γ
(
d
2 −n16+n7

)
Γ
(
n35−

d
2

)
Γ (n1)Γ (n2)Γ (n3)Γ (n5) Γ (d−n1246+n7)

2

×

∫ i∞
−i∞

dz

2πi

×
Γ (−z)Γ

(
d
2 −n146− z

)
Γ
(
d
2 −n1246+n37− z

)
Γ
(
d
2 −n16− z

)

×
Γ (n1+ z)Γ

(
d
2 −n3+ z

)
Γ
(
n1246−

d
2 + z

)
Γ (n16+ z)

, (16)

F
(1c-1c)
NP (n1, ..., n6, n7 = 0) =

(
M2

Q2

)4−n1356
e−niπ e2εγE

×
Γ
(
n16−

d
2

)
Γ (n1356−d)

Γ (n1)Γ (n3)Γ (n5)Γ (n6)Γ
(
d
2 −n24

)

×

∫ i∞
−i∞

dz

2πi
Γ (−z)

×Γ
(
n13−

d
2 − z

) Γ (n5−n4+ z)Γ (d2 −n1+ z
)

Γ
(
n156−n4−

d
2 + z

)

×
Γ
(
d
2 −n24+ z

)
Γ
(
d
2 −n34+ z

)
Γ
(
d
2 −n4+ z

) , (17)

F
(1c-2c)
NP (n1, ..., n7) =

(
M2

Q2

)4−n3456
e−niπ e2εγE

×
Γ (n37−n2)Γ (n47−n1)Γ

(
d
2 −n13

)
Γ
(
d
2 −n24

)
Γ (n3)Γ (n4)Γ (n5)Γ (n6) Γ

(
d
2 −n12+n7

)2
×Γ
(
n35−

d
2

)
Γ
(
n46−

d
2

)
, (18)

F
(1c-1c’)
NP (n1, ..., n7) =

(
M2

Q2

)4−n2345
e−niπ e2εγE

×
Γ (d−n234)Γ

(
n24−

d
2

)
Γ (n2345−d)

Γ (n2)Γ (n3)Γ (n4)Γ (n5)Γ
(
d
2 −n16+n7

)
Γ (d−n2347)
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×

∫ i∞
−i∞

dz

2πi
Γ (−z)Γ

(
d
2 −n347− z

)
Γ (n37−n6+ z)

×
Γ
(
d
2 −n2+ z

)
Γ
(
d
2 −n16+n7+ z

)
Γ
(
d
2 −n6+n7+ z

) , (19)

F
(us’-us’)
NP (n1, ..., n7) =

(
M2

Q2

)8−n1256−2n34−2ε
e−niπ

× e2εγE
Γ (d−n134)Γ (d−n234)Γ

(
n13−

d
2

)
Γ
(
n24−

d
2

)
Γ (n1)Γ (n2)Γ (n3)Γ (n4)Γ (n5)Γ (n6)

×Γ (n2345−d)Γ (n1346−d) , (20)

F
(1c-us’)
NP (n1, ..., n7) =

(
M2

Q2

)6−n2356−2n4−ε
e−niπ e2εγE

×
Γ
(
d
2 −n4

)
Γ
(
d
2 −n13

)
Γ (d−n234)Γ

(
n24−

d
2

)
Γ (n2)Γ (n3)Γ (n4)Γ (n5)Γ (n6)Γ (n47−n1)Γ

(
d
2 −n3

)
×Γ
(
n46−

d
2

)
Γ
(
n347−

d
2

)
Γ (n2345−d) . (21)

Using the symmetry of the non-planar graph under the
exchange of the parameters n1↔ n2, n3↔ n4 and n5↔
n6, one gets F

(h-2c)
NP from F

(1c-h)
NP , F

(2c-2c)
NP from F

(1c-1c)
NP ,

F
(2c’-2c)
NP from F

(1c-1c’)
NP and F

(us’-2c)
NP from F

(1c-us’)
NP . The ex-

pression (20) for the (us’-us’) region is valid for general n7
although it does not involve n7 explicitly: The only de-
pendence on n7 of this region is cancelled by the prefactor
(Q2)−n7 in (15).
We have checked the completeness of our set of re-

gions by writing the full scalar integral for arbitrary pa-
rameters ni (except n7 = 0) as a four-fold Mellin–Barnes
representation. From this expression, we have extracted
the residues yielding the non-suppressed contributions and
have found 11 terms with exactly the same dependence on
M2/Q2 as the 11 regions listed above.
The evaluation of the Mellin–Barnes integrals is done

as described in the previous section. The structure of sin-
gularities needing analytic regularization is more compli-
cated than in the planar case. Various poles involving
combinations of the parameters ni are cancelled between
the collinear regions (1c-1c), (2c-2c), (1c-2c), (1c-1c’) and
(2c’-2c).
The contributions of all regions sum up to the results

for the scalar integrals originating from the reduction of
the non-planar Feynman diagram. Examples of these re-
sults are

FNP(1, 1, 1, 1, 1, 1, 0)=
7

12
L4−

π2

6
L2+20ζ3L−

31

180
π4 ,

(22)

FNP(1, 1, 1, 1, 1, 1, 1)=
1

4
L4−

π2

6
L2+14ζ3L−

π4

90
, (23)

FNP(1, 1, 1, 1, 1, 1, 2)=
2

ε2
+
1

ε
(−4L+7)+

1

4
L4−L3

+

(
−
π2

6
+9

)
L2+(14ζ3−30)L

−
π4

90
−4ζ3+

π2

3
+38 , (24)

FNP(1, 1, 1, 1, 1, 1, 3)=
7

2ε2
+
1

ε

(
−7L+

111

8

)

+
1

4
L4−

3

2
L3+

(
−
π2

6
+
59

4

)
L2

+

(
14ζ3−

211

4

)
L

−
π4

90
−6ζ3+

3

4
π2+

571

8
. (25)

The result (22) for the scalar graph without numerator
is known from [58]. The complete non-planar vertex cor-
rection with contributions from all scalar integrals is as
follows:

Fv,NP =

(
C2F−

1

2
CFCA

)( α
4π

)2( µ2
M2

)2ε
S2ε

×

{
−
2

ε
+
1

3
L4−

8

3
L3+

(
−
2

3
π2+12

)
L2

+

(
40ζ3+

2

3
π2−28

)
L−

4

15
π4−72ζ3−π

2+28

}

+O(ε)+O

(
M2

Q2

)
. (26)

3.5 Vertex correction with Mercedes–Benz graph

Figure 6 illustrates the scalar integrals resulting from the
reduction of the Mercedes–Benz graph in Fig. 2c.With our
choice of 2p2k5 as the irreducible scalar product, the scalar
integrals are defined as

FBE(n1, ..., n7) = e
2εγE (M2)2ε (Q2)n−n7−4

×

∫
ddk

iπd/2

∫
dd	

iπd/2
(2p2k)

n7

(	2−2p1	)
n1 (	2−2p2	)

n2

×
1

(k2−2p1k−M2)n3 (	2−M2)n4 (k2)n5 ((k− 	)2)n6
,

(27)

with k = k5 and 	= k4. The list of relevant regions for the
Mercedes–Benz graph is shown here:

(h-h): k ∼Q , 	∼Q

(1c-h): k ‖ p1 , 	∼Q

Fig. 6. Scalar Mercedes–Benz
graph
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(h-2c): k ∼Q , 	 ‖ p2

(us-2c): k ∼M2/Q , 	 ‖ p2
(1c-1c): k ‖ p1 , 	 ‖ p1
(2c-2c): k ‖ p2 , 	 ‖ p2
(1c-2c): k ‖ p1 , 	 ‖ p2 .

The leading contributions of all regions could be evaluated
for general n7, but the (us-2c) and the (2c-2c) region are
only non-suppressed for n7 = 0:

F
(h-h)
BE (n1, ..., n7) =

(
M2

Q2

)2ε
e−niπ e2εγE

i123≤n7∑
i1,i2,i3≥0

×
n7!

i1! i2! i3! (n7− i123)!

Γ (n1+ i3)Γ (n4+ i2)

Γ (n1)Γ (n2)Γ (n3)Γ (n4)

×
Γ
(
d
2 −n35

)
Γ (d−n13456+ i1)Γ (n123456−d)

Γ (n5)Γ (n6)Γ (d−n356+ i123)Γ
(
3
2d−n123456+n7

)

×

∫ i∞
−i∞

dz

2πi
Γ (−z)Γ

(
d
2 −n56+ i12− z

)
Γ (n5+ z)

×Γ
(
d
2 −n24+n7− i12+ z

) Γ (n3567− i123− d2 + z
)

Γ
(
n13567− i12−

d
2 + z

)

×
Γ (d−n36−2n5+ i123− z)

Γ (d−n36−2n5+ i12− z)
, (28)

F
(1c-h)
BE (n1, ..., n7) =

(
M2

Q2

)2−n35+ε
e−niπ e2εγE

×
Γ
(
n35−

d
2

)
Γ
(
d
2 −n146

)
Γ (n1)Γ (n2)Γ (n3)Γ (n6)Γ (d−n1246)

×

∫ i∞
−i∞

dz

2πi
Γ (−z)Γ

(
d
2 −n246− z

)

×
Γ (n6+ z)Γ

(
d
2 −n5+n7+ z

)
Γ
(
n1246−

d
2 + z

)
Γ
(
d
2 +n7+ z

) ,

(29)

F
(h-2c)
BE (n1, ..., n7) =

(
M2

Q2

)2−n24+ε
e−niπ e2εγE

×
Γ
(
d
2 −n2

)
Γ
(
d
2 −n35

)
Γ
(
d
2 −n1356+n2

)
Γ (n2)Γ (n3)Γ (n4)Γ (n6)

×
Γ
(
d
2 −n56+n7

)
Γ
(
n24−

d
2

)
Γ
(
n356−

d
2

)
Γ (d−n1356)Γ (d−n356+n7)

, (30)

F
(us-2c)
BE (n1, ..., n7) =

(
M2

Q2

)6−n2346−2n5+n7−ε
e−niπ

× e2εγE
Γ
(
d
2 −n5+n7

)
Γ (d−n256+n7)Γ

(
n35−

d
2

)
Γ (n2)Γ (n3)Γ (n4)Γ (n5)Γ (n6)Γ (n5−n17)

×Γ (n25−n17−
d
2 )Γ (n56−n7−

d
2 )Γ (n2456−n7−d) ,

(31)

F
(1c-1c)
BE (n1, ..., n7) =

(
M2

Q2

)4−n13456
e−niπ e2εγE

×
i12≤n7∑
i1,i2≥0

n7!

i1! i2! (n7− i12)!

Γ (n1+ i2)

Γ (n1)Γ (n3)Γ (n4)Γ (n5)

×
1

Γ (n6)Γ
(
d
2 −n2+n7

)
∫ i∞
−i∞

dz1
2πi

∫ i∞
−i∞

dz2
2πi
Γ (−z1)

×
Γ
(
n16− i1−

d
2 − z1

)
Γ (n1356− i1−d− z1)

Γ (n1+ i2− z1)

×Γ (n4+ i1+ z1)Γ (−z2)Γ
(
d
2 −n56+ i1− z2

)

×Γ (n5+ z2)
Γ (n1−n5+ i2− z1− z2)

Γ (n1−n5− z1− z2)

×Γ
(
d
2 −n1+n7− i2+ z1+ z2

)

×
Γ
(
d
2 −n2+n7+ z1+ z2

)
Γ
(
d
2 +n7+ z1+ z2

) , (32)

F
(2c-2c)
BE (n1, ..., n7) =

(
M2

Q2

)4−n2456+n7
e−niπ e2εγE

×
i123≤n7∑
i1,i2,i3≥0

n7!

i1! i2! i3! (n7− i123)!

Γ (n1+ i1)Γ (n37− i1)

Γ (n1)Γ (n2)Γ (n3)

×
Γ (n2−n137+ i2)

Γ (n4)Γ (n5)Γ (n6)

Γ
(
d
2 −n35+ i1

)
Γ
(
d
2 −n6+ i23

)
Γ
(
d
2 −n13

)
Γ (d−n356+ i123)

×Γ (d−n256+n7+ i3)Γ
(
n56− i23−

d
2

)
×Γ (n2456−n7−d) , (33)

F
(1c-2c)
BE (n1, ..., n7) =

(
M2

Q2

)4−n2345
e−niπ e2εγE

×
Γ (n2−n16)Γ

(
d
2 −n2

)
Γ
(
d
2 −n56+n7

)
Γ
(
n24−

d
2

)
Γ (n2)Γ (n3)Γ (n4)Γ

(
d
2 −n16

)
Γ
(
d
2 −n6+n7

)
×Γ
(
n35−

d
2

)
. (34)

For the summation indices we use the shorthand notation
i12··· = i1+ i2+ ..., and the multiple summation is defined
in the following way:

i12···≤n7∑
i1,i2,...≥0

=

n7∑
i1=0

n7−i1∑
i2=0

· · · .

We were able to reproduce the above expressions (28)–
(34) for the regions by writing the full scalar integral with
general ni as a triple sum over a three-fold Mellin–Barnes
integral and extracting all non-suppressed contributions.
Our evaluation of the (h-h) region is in agreement with the
known results for the massless diagram [53–55].
The (1c-1c) region is of order (M2/Q2)−1 when n1 =

n3 = n4 = n5 = n6 = 1. But in all these cases the inverse
power of M2 is cancelled by a factor of M2 in the coef-
ficient originating from the reduction to scalar integrals.
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The purely collinear regions (1c-1c), (2c-2c) and (1c-2c) de-
velop poles at several points in the parameter space of the
ni which need to be regularized analytically and cancel be-
tween these three regions.
The most complicated evaluation of the contributions

to the Mercedes–Benz graph has to be performed for the
(1c-1c) region with its two-fold Mellin–Barnes integral, es-
pecially when all propagators are present, n1 = · · ·= n6 =
1, for n7 = 0, 1, 2. In these three cases FBE is of order
(M2/Q2)−1, as described in the previous paragraph, and
only the (1c-1c) region contributes to the leading term. In
addition, the integrals are finite with respect to both di-
mensional and analytic regularization, and they result in
simply a numerical constant times (Q2/M2). To evaluate
these three complicated integrals, where none of the two in-
tegrations can be performed explicitly due to Barnes lem-
mas (see Appendix C), we used the following strategy ex-
emplified here by FBE(1, 1, 1, 1, 1, 1, 0). After setting d= 4
(ε= 0) and applying some simplifications, (32) yields

FBE(1, 1, 1, 1, 1, 1, 0)=−
Q2

M2

∫ i∞
−i∞

dz1
2πi

∫ i∞
−i∞

dz2
2πi

×
Γ (−z1)2Γ (z1)Γ (−z2)2Γ (1+ z2)Γ (1+ z1+ z2)

1+ z1+ z2
,

(35)

where the integration contours may be chosen, e.g., as
straight lines with Re z1 =Re z2 =−0.3.We performed the
integration over z1 by closing the integration contour to the
right and taking residues at the points z1 = 0, 1, 2, ...,m, ...,
which are given by integrals over z2. For any givenm, such
integrals can be evaluated with Barnes lemmas and their
corollaries. We performed such calculations up to order
m= 100. After having understood the dependence of these
integrals onm, we switched to “experimental mathemat-
ics” (see e.g. [59], and [60] for earlier similar examples) and
made a (successful) guess that the result of the integra-
tion over z2 can be represented in terms of nested sums [61]
(of the argument m), in particular sign-alternating sums.
Using an ansatz as a linear combination of these nested
sums, with unknown coefficients, we solved linear systems
of equations in order to find the coefficients. The sum-
mation of the final series, over m, was quite straightfor-
ward and gave results where a value of the polylogarithm,
Li4(

1
2 )≈ 0.517479, appeared:

FBE(1, 1, 1, 1, 1, 1, 0)=
Q2

M2

[
−8 Li4

(
1

2

)
−
1

3
ln4 2

+
π2

3
ln2 2+

19

144
π4
]
, (36)

FBE(1, 1, 1, 1, 1, 1, 1)=
Q2

M2

[
−24 Li4

(
1

2

)
− ln4 2

+π2 ln2 2+
19

48
π4−14ζ3−π

2−1

]
,

(37)

FBE(1, 1, 1, 1, 1, 1, 2)=
Q2

M2

[
−104 Li4

(
1

2

)
−
13

3
ln4 2

+
13

3
π2 ln2 2+

247

144
π4−63ζ3

−
31

6
π2−

73

16

]
. (38)

We have checked these analytic constants by a direct nu-
merical evaluation of the Mellin–Barnes integrals. The re-
sult (36) without numerator agrees with [62].
The contributions from all relevant regions of all scalar

integrals sum up to the vertex correction corresponding to
the Mercedes–Benz graph in Fig. 2c:

Fv,BE =

(
C2F−

1

2
CFCA

)( α
4π

)2( µ2
M2

)2ε
S2ε

×

{
1

2ε2
+
1

ε

[
−L2+3L−

2

3
π2−

13

4

]

+L3+

(
π2

3
−7

)
L2+

(
8ζ3−2π

2+
53

2

)
L

+128Li4

(
1

2

)
+
16

3
ln4 2−

16

3
π2 ln2 2−

28

15
π4

+54ζ3+
115

12
π2−

263

8

}
+O(ε)+O

(
M2

Q2

)
.

(39)

3.6 Vertex correction with fermion self-energy

Figure 2d shows the Feynman diagram of the vertex cor-
rection with a self-energy insertion in one of the fermion
lines. The reduction to scalar integrals as shown in Fig. 7
produces the following expressions:

Ffc(n1, ..., n5) = e
2εγE (M2)2ε (Q2)n−4

×

∫
ddk

iπd/2

∫
dd	

iπd/2
1

(k2+2kp1)
n1 (k2+2kp2)

n2

×
1

(k2−M2)n3 ((p2+k+ 	)2)
n4 (	2−M2)n5

, (40)

with k = k3, 	 = k5 and n = n12345. For this graph, not
every scalar product appearing in the numerator can be
expressed linearly in terms of the only five factors in the de-
nominator. But by applying standard tensor reduction [63]

Fig. 7. Scalar graph with
fermion self-energy
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to the subgraph of the one-loop self-energy insertion (lines
4 and 5), the formally irreducible scalar products may be
transformed into reducible ones, so that only scalar inte-
grals without numerator have to be treated.
Due to the self-energy insertion the evaluation of the

loop integrations is rather easy. The complete scalar inte-
gral (40) with general indices ni may be expressed as an
only two-fold Mellin–Barnes representation:

Ffc(n1, ..., n5) =
e−niπ e2εγE Γ (d2 −n4)

Γ (n1)Γ (n3)Γ (n4)Γ (n5)

×

∫ i∞
−i∞

dz1
2πi

∫ i∞
−i∞

dz2
2πi

(
M2

Q2

)2ε+z1 Γ (d−n2345− z1)

Γ
(
3
2d−n12345− z1

)
×Γ (n12345−d+ z1)Γ (−z2)Γ (n3+ z2)Γ

(
d
2 −n1+ z2

)

×
Γ (−n3− z1− z2)Γ

(
d
2 −n35− z1− z2

)
Γ (d−n345− z1− z2)

×
Γ
(
n345−

d
2 + z1+ z2

)
Γ
(
n2345−

d
2 + z1+ z2

) . (41)

From this expression, the residues producing non-sup-
pressed contributions are extracted. They correspond ex-
actly to the contributions from the following five regions:

(h-h): k ∼Q , 	∼Q

(1c-h): k ‖ p1 , 	∼Q

(2c-2c): k ‖ p2 , 	 ‖ p2
(h-s): k ∼Q , 	∼M

(1c-s): k ‖ p1 , 	∼M .

These contributions are evaluated as

F
(h-h)
fc (n1, ..., n5) =

(
M2

Q2

)2ε
e−niπ e2εγE

×
Γ
(
d
2 −n13

)
Γ
(
d
2 −n4

)
Γ
(
d
2 −n5

)
Γ (d−n2345)

Γ (n1)Γ (n4)Γ (n5)Γ (d−n45)Γ
(
3
2d−n12345

)

×
Γ
(
n45−

d
2

)
Γ (n12345−d)

Γ
(
n245−

d
2

) , (42)

F
(1c-h)
fc (n1, ..., n5) =

(
M2

Q2

)2−n13+ε
e−niπ e2εγE

×
Γ
(
d
2 −n1

)
Γ
(
d
2 −n4

)
Γ
(
d
2 −n5

)
Γ
(
d
2 +n1−n245

)
Γ (n1)Γ (n3)Γ (n4)Γ (n5)Γ (d−n45)Γ (d−n245)

×Γ
(
n13−

d
2

)
Γ
(
n45−

d
2

)
, (43)

F
(2c-2c)
fc (n1, ..., n5) =

(
M2

Q2

)4−n2345
e−niπ e2εγE

×
Γ
(
d
2 −n4

)
Γ (n3)Γ (n4)Γ (n5)Γ

(
d
2 −n1

)
∫ i∞
−i∞

dz

2πi

Γ (−z)

Γ (n2− z)

×Γ
(
n24−

d
2 − z

)
Γ (n245−d− z)Γ (n3+ z)

×
Γ
(
d
2 −n1+ z

)
Γ
(
d
2 −n2+ z

)
Γ
(
d
2 + z

) , (44)

F
(h-s)
fc (n1, ..., n5) =

(
M2

Q2

)2−n5+ε
e−niπ e2εγE

×
Γ
(
d
2 −n13

)
Γ
(
d
2 −n234

)
Γ
(
n1234−

d
2

)
Γ
(
n5−

d
2

)
Γ (n1)Γ (n5)Γ (n24)Γ (d−n1234)

,

(45)

F
(1c-s)
fc (n1, ..., n5) =

(
M2

Q2

)4−n135
e−niπ e2εγE

×
Γ (n1−n24)Γ

(
d
2 −n1

)
Γ
(
n13−

d
2

)
Γ
(
n5−

d
2

)
Γ (n1)Γ (n3)Γ (n5)Γ

(
d
2 −n24

) .

(46)

The contribution of the (h-h) region is known from the
massless diagram [53–55, 64]. In the reduction to scalar
integrals only parameters ni with n2 ≤ 2 and ni ≤ 1, i =
1, 3, 4, 5, are involved. Therefore the contributions of the
(h-s) and (1c-s) regions are always suppressed by at least
one factor M2/Q2. On the other hand, the (2c-2c) region
is of order (M2/Q2)−1 if n2 = 2, n3 = n4 = n5 = 1, but this

inverse power ofM2 is cancelled by a factor ofM2 from the
reduction to scalar integrals.
For the leading order in M2/Q2, no analytic regular-

ization is necessary. The contributions of the (h-h), (1c-h)
and (2c-2c) regions sum up to the results for the scalar in-
tegrals, e.g.

Ffc(1, 1, 1, 1, 1) =
1

ε

(
−
1

2
L2−

π2

3

)
+
1

2
L3−L2

+4ζ3−
π2

3
, (47)

Ffc(1, 2, 1, 1, 1) =
Q2

M2

[
−
1

ε2
−
1

ε
−
π2

3
−
3

2

]
. (48)

The whole vertex correction originating from the Feynman
diagram in Fig. 2d evaluates to

Fv,fc = C
2
F

( α
4π

)2( µ2
M2

)2ε
S2ε

×

{
−
1

2ε2
+
1

ε

[
L2−3L+

2

3
π2+

13

4

]
−L3+5L2

−
33

2
L−8ζ3−

π2

4
+
171

8

}
+O(ε)+O

(
M2

Q2

)
.

(49)

3.7 Vertex correction with non-Abelian
Mercedes–Benz graph

TheMercedes–Benz graph in Fig. 3a is of pure non-Abelian
nature due to its three-gauge-boson vertex. The corres-
ponding scalar integrals are illustrated in Fig. 8 and de-
fined as follows:

FBECA(n1, ..., n7) = e
2εγE (M2)2ε (Q2)n−n7−4

×

∫
ddk

iπd/2

∫
dd	

iπd/2
(2p2k)

n7

(	2−2p1	)
n1 (	2−2p2	)

n2
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×
1

(k2−2p1k)
n3 (	2−M2)n4 (k2−M2)n5

×
1

((k− 	)2−M2)n6
, (50)

with k = k5, 	= k4 and n= n123456. This definition is the
same as for the Abelian Mercedes–Benz graph in Fig. 6
and (27), except for the distribution of the masses in the
propagators. Also the list of relevant regions is similar, but
now there is the (s’-h) region instead of the (us-2c) region:

(h-h): k ∼Q , 	∼Q

(1c-h): k ‖ p1 , 	∼Q

(h-2c): k ∼Q , 	 ‖ p2
(s’-h): k6 ∼M , 	∼Q

(1c-1c): k ‖ p1 , 	 ‖ p1
(2c-2c): k ‖ p2 , 	 ‖ p2
(1c-2c): k ‖ p1 , 	 ‖ p2 .

The (s’-h) region is of order (M2/Q2)2−n6+ε and therefore
suppressed with respect to the (h-h) region, as ni ≤ 1 (i=
1, ..., 6). The (2c-2c) region is of order (M2/Q2)4−n2456+n7

and suppressed for n7 > 0; it is only evaluated for n7 = 0.
The leading contributions of regions with k3, k5, k6 ∼

Q are identical to the corresponding contributions of the
Abelian Mercedes–Benz graph:

F
(h-h)
BECA

(n1, ..., n7) = F
(h-h)
BE (n1, ..., n7) , (51)

F
(h-2c)
BECA

(n1, ..., n7) = F
(h-2c)
BE (n1, ..., n7) . (52)

The contributions of the other regions are given by

F
(1c-h)
BECA

(n1, ..., n7) =

(
M2

Q2

)2−n35+ε
e−niπ e2εγE

×
Γ
(
d
2 −n3

)
Γ
(
d
2 −n146

)
Γ
(
n35−

d
2

)
Γ (n1)Γ (n2)Γ (n3)Γ (n5)Γ (n6)Γ (d−n1246)

×

∫ i∞
−i∞

dz

2πi

Γ (−z)Γ
(
d
2 −n246− z

)
Γ (n6+ z)Γ (n37+ z)

Γ
(
d
2 +n7+ z

)
×Γ (n1246−

d
2 + z) , (53)

F
(1c-1c)
BECA

(n1, ..., n7) =

(
M2

Q2

)4−n13456
e−niπ e2εγE

×
i123≤n7∑
i1,i2,i3≥0

n7!

i1! i2! i3! (n7− i123)!

Γ (n17− i12)

Γ (n1)Γ (n3)Γ (n4)Γ (n5)

Fig. 8. Scalar non-Abelian
Mercedes–Benz graph

×
1

Γ (n6)Γ
(
d
2 −n2+n7

)

×

∫ i∞
−i∞

dz1
2πi

∫ i∞
−i∞

dz2
2πi
Γ (−z1)Γ (−z2)

×Γ (n5+ z1)Γ
(
d
2 −n3+n7− i123+ z1

)
Γ (n4+ i1+ z2)

×
Γ
(
n1467− i123−

d
2 + z2

)
Γ (n13456−d+ z2)

Γ (n147− i2+ z2)

×
Γ
(
n134+ i13−

d
2 − z1+ z2

)
Γ
(
n14567− i123−

d
2 + z1+ z2

)

×
Γ
(
d
2 −n14+ i2+ z1− z2

)
Γ
(
d
2 −n4+n7− i1+ z1− z2

)
×Γ
(
d
2 −n24+n7− i1+ z1− z2

)
, (54)

F
(2c-2c)
BECA

(n1, ..., n6, n7 = 0) =

(
M2

Q2

)4−n2456
e−niπ e2εγE

×
Γ (n2−n13)

Γ (n2)Γ (n4)Γ (n5)Γ (n6)Γ
(
d
2 −n13

)
∫ i∞
−i∞

dz

2πi
Γ (−z)

×
Γ
(
n24−

d
2 − z

)
Γ (n5+ z)Γ (n6−n3+ z)

Γ (n56−n3+2z)

×Γ
(
d
2 −n2+ z

)
Γ
(
n56−

d
2 + z

)
, (55)

F
(1c-2c)
BECA

(n1, ..., n7) =

(
M2

Q2

)4−n2345
e−niπ e2εγE

×
Γ (n2−n16)Γ (n37−n6)Γ

(
d
2 −n2

)
Γ
(
d
2 −n3

)
Γ (n2)Γ (n3)Γ (n4)Γ (n5)Γ

(
d
2 −n16

)
Γ
(
d
2 −n6+n7

)
×Γ
(
n24−

d
2

)
Γ
(
n35−

d
2

)
. (56)

The evaluation of this non-Abelian vertex graph is more
complicated than in the Abelian case, mainly due to the
appearance of three massive propagators. The complete
summation of the infinite number of residues in theMellin–
Barnes integrals (54) and (55) is quite intricate. As the cal-
culation of the four-fermion amplitude demands the result
of the form factor only to N3LL accuracy, we have refrained
from calculating the non-logarithmic constant in the non-
Abelian corrections (cf. the beginning of Sect. 3). There-
fore we have only extracted all logarithms ln(Q2/M2) from
the integrals.
The (1c-h) region has been evaluated in the usual way

as described in the previous sections. From the (c-c) re-
gions, i.e. (1c-1c), (2c-2c) and (1c-2c), the logarithmic con-
tributions have been isolated. The expressions for the re-
gions depend on M2/Q2 only through a prefactor of the
form (M2/Q2)m+x, where m is an integer and x is made
up of regularization parameters (like ε) tending to zero.
Logarithms ln(Q2/M2) arise only when poles in the regu-
larization parameters appear, e.g.(

M2

Q2

)x
1

x
=
1

x
− ln

(
Q2

M2

)
+O(x) .

As the exponents of these prefactors in the contribu-
tions (54)–(56) of the (c-c) regions involve only the param-
eters ni and not ε, only poles originating from the analytic
regularization may give rise to logarithms. A thorough an-
alysis of the Mellin–Barnes integrals shows that such poles
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only appear in the following seven integrals:

F
(c−c)
BECA

(−1, 1, 1, 1, 1, 1, 0) ,

F
(c−c)
BECA

(0, 1, 1, 1, 1, 1, n7) with n7 = 0, 1, 2 ,

F
(c−c)
BECA

(1, 1, 0, 1, 1, 1, 0) and

F
(c−c)
BECA

(1, 1, 1, 1, 1, 0, n7) with n7 = 0, 1 .

When closing the integration contours in the Mellin–
Barnes integrals, it is sufficient to take those residues
which are responsable for the poles. In most cases these
are only a finite number of residues. Only the integrals
F
(c−c)
BECA

(0, 1, 1, 1, 1, 1, 0) and F
(c−c)
BECA

(1, 1, 0, 1, 1, 1, 0) need
the summation of an infinite number of residues. Such sum-
mations can be transformed to infinite series like

∞∑
m=0

1(
2m
m

)
(

1

3+2m
−

1

1+2m

)

×

(
1

3+2m
+

1

1+2m
+S1(2m)−S1(m)

)
, (57)

where S1(m) =
∑m
i=1

1
i
is a harmonic sum. Recently there

has been a lot of progess in solving summations like (57)
analytically (see e.g. [65, 66]). But still not all possible
cases are covered, and the transformation of a given expres-
sion into a series where the solution is known can be quite
cumbersome.
On the other hand, the series in (57) is converging very

fast. The numerical summation of the first 300 terms ap-
proximates the series with an accuracy of more than 100
decimal digits. This enables us to use the following method
(see e.g. [67]). An ansatz is chosen as a linear combina-
tion of analytical constants like π2, ζ3, ln

4 2 etc. with un-
known rational coefficients. The determination of the coef-
ficients starting from the numerical result is performed by
the PSLQ algorithm [68–70]. We have used an implemen-
tation [71] of PSLQ in Fortran with multiprecision arith-
metic [72, 73]. The series above in (57) has hereby been
identified with the analytical expression 4

√
3Cl2(

π
3 )− 8,

where Cl2(
π
3 )≈ 1.014942 is a value of the Clausen function.

In addition to the logarithms, we have calculated in
a purely analytical way the complete set of poles in ε in
order to control the cancellation of ultraviolet and infrared
singularities.
The contributions from all regions sum up to the results

of the scalar integrals, from which we quote the two most
complicated ones:

FBECA(0, 1, 1, 1, 1, 1, 0)=−
1

12
L4−

π2

6
L2+

2

3
ζ3L , (58)

FBECA(1, 1, 0, 1, 1, 1, 0)=
1

ε

(
−
1

2
L2−

π2

3

)
+
1

3
L3−L2

+2
√
3Cl2

(π
3

)
L , (59)

where non-logarithmic terms of order ε0 have been omit-
ted. The integrals FBECA(1, n2, 1, 1, 1, 1, n7) are of order
(M2/Q2)−1, with the only contribution coming from the

(1c-1c) region, and the inverse power of M2 is again can-
celled by a factor of M2 from the reduction to scalar
integrals. These integrals, however, produce neither log-
arithms L = ln(Q2/M2) nor poles in ε and do therefore
not contribute to the result in N3LL accuracy. The result
for the vertex correction corresponding to the non-Abelian
Mercedes–Benz graph in Fig. 3a is as follows:

Fv,BECA = CFCA
( α
4π

)2( µ2
M2

)2ε
S2ε

×

{
3

4ε2
+
1

ε

[
−
3

2
L2+

9

2
L−π2−

37

8

]
+
1

12
L4

+
1

2
L3+

(
π2

6
−
11

2

)
L2

+

(
4
√
3Cl2

(π
3

)
−
2

3
ζ3−

5

6
π2+

89

4

)
L

}

+O(ε0L0)+O(ε)+O

(
M2

Q2

)
. (60)

3.8 Non-Abelian vertex corrections
with loop insertions

This section treats all vertex diagrams from Fig. 3 where
a self-energy loop has been inserted in the gauge boson
propagator: the gauge boson loop in Fig. 3b, the ghost field
loop in Fig. 3c and loops involving the Higgs and Gold-
stone bosons in Fig. 3d, 3e and 3f. Care must be taken in
the interpretation of the Feynman rules (Appendix A) not
to forget the factor (−1) for the loop of the anticommuting
ghost fields and the symmetry factor 1/2 for the loops with
two gauge bosons or two Goldstone bosons.
Additional contributions from “tadpoles”, where a loop

of only one gauge, Higgs or Goldstone boson is attached to
the gauge boson propagator via a vertex with four fields,
are omitted here because they are cancelled exactly by the
corresponding contributions from the renormalization of
the gauge boson mass (see Sect. 4).
For the Higgs bosonmassMH we use the approximation

MH =MW, which facilitates the loop calculations. The
form factor depends on the Higgs mass only in N3LL accu-
racy, i.e. via the coefficient of the linear logarithm, and the
higher powers of the electroweak logarithm are not affected
by changes in the Higgs mass. We have checked explicitly
by evaluating the Higgs contributions for the hypothetical
case MH = 0 (see the discussion of the results in Sect. 5)
that effects due to a wrong value of the Higgs mass are in-
deed negligible.
As in our approximation (and using the Feynman–

’t Hooft gauge) all particles running in the self-energy loop
have the same mass M =MW, the vertex corrections of
this section share the same set of scalar integrals, which are
illustrated in Fig. 9 and defined in the following equation:

FWc(n1, ..., n6) = e
2εγE (M2)2ε (Q2)n−4

×

∫
ddk

iπd/2

∫
dd	

iπd/2
1

(k2+2p1k)
n1 (k2+2p2k)

n2
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Fig. 9. Scalar graph
for non-Abelian ver-
tex corrections with
loop insertions

×
1

(k2−M2)n3 (	2−M2)n4 ((k+ 	)2−M2)n5 (k2)n6
,

(61)

with k = k3 and 	= k4. The additional massless propaga-
tor corresponding to the parameter n6 is introduced when
performing a tensor reduction on the self-energy loop (lines
4 and 5) in order to eliminate the scalar products in the
numerator of the integral. The presence of both a mas-
sive and a massless propagator with the same momentum
k3 = k6 = k could, of course, be avoided by partial fraction-
ing. But this would produce factors of 1/M2, complicat-
ing the expansion in M2/Q2. So we remained with both
propagators in the scalar integrals (61). In order to avoid
ambiguities in the reduction to scalar integrals, we fixed
n3 = 2 and cancelled factors of k

2 in the numerator exclu-
sively with the sixth propagator.
In general the following regions are relevant:

(h-h): k ∼Q , 	∼Q

(h-s): k ∼Q , 	∼M

(h-s’): k ∼Q , k5 ∼M

(1c-1c): k ‖ p1 , 	 ‖ p1
(2c-2c): k ‖ p2 , 	 ‖ p2 .

But since the (h-s) regions is of order (M2/Q2)2−n4+ε and
the (h-s’) regions is of order (M2/Q2)2−n5+ε, they are both
suppressed with respect to the (h-h) region for all relevant
cases. The contributions from the other regions can be ex-
pressed as follows:

F
(h-h)
Wc (n1, ..., n6) =

(
M2

Q2

)2ε
e−niπ e2εγE

×
Γ
(
d
2 −n4

)
Γ
(
d
2 −n5

)
Γ (d−n13456)Γ (d−n23456)

Γ (n1)Γ (n2)Γ (n4)Γ (n5)Γ (d−n45)Γ
(
3
2d−n123456

)
×Γ
(
n45−

d
2

)
Γ (n123456−d) , (62)

F
(1c-1c)
Wc (n1, ..., n6) =

(
M2

Q2

)4−n13456
e−niπ e2εγE

×
Γ (n1−n2)

Γ (n1)Γ (n3)Γ (n4)Γ (n5)Γ
(
d
2 −n2

)
∫ i∞
−i∞

dz

2πi
Γ (−z)

×
Γ
(
n136−

d
2 − z

)
Γ (n4+ z)Γ (n5+ z)Γ

(
d
2 −n16+ z

)
Γ (n45+2z)

×Γ
(
n45−

d
2 + z

)
. (63)

For symmetry reasons, F
(2c-2c)
Wc can be obtained from

F
(1c-1c)
Wc by exchanging n1↔ n2. Some of the (1c-1c) and
(2c-2c) contributions are of order (M2/Q2)−1, but this in-
verse power ofM2 is always cancelled by a factor ofM2

originating either from the reduction to scalar integrals
or from the Feynman rules, when two WWH-vertices are
present.
As for the non-Abelian Mercedes–Benz graph in the

previous section, we have only extracted the logarithms
and the poles in ε. The (c-c) regions (1c-1c) and (2c-2c)
produce logarithmic terms for n1 = n2 = 1. For most of
the (c-c) contributions, the evaluation of a finite number
of residues in the complex z-plane is sufficient. Only the
two cases F

(c-c)
Wc (1, 1, 2, 1, 1, 0) and F

(c-c)
Wc (1, 1, 2, 1, 1,−1)

demand the summation of an infinite number of residues.
We have solved these two summations numerically and
found the corresponding analytic expressions with the help
of the PSLQ algorithm. In all cases the extraction of the
poles in ε required only a finite number of residues.
We quote the results for the two most complicated

scalar integrals:

FWc(1, 1, 2, 1, 1, 0) =
Q2

M2

[
1

ε
−
4

3

√
3Cl2

(π
3

)
+2

]
L ,

(64)

FWc(1, 1, 2, 1, 1,−1)=
1

ε

(
−
1

2
L2+L−

π2

3

)
+
1

3
L3

−L2+

(
2

3

√
3Cl2
(π
3

)
+2

)
L . (65)

The vertex corrections corresponding to the Feynman dia-
grams in Fig. 3b–f are obtained by inserting the results for
the scalar integrals into the expressions returned from the
reduction of each diagram.
The vertex corrections with the non-Abelian gauge bo-

son and ghost field loops, Fig. 3b and c, have been evalu-
ated together. Their sum is

Fv,WWcc = CFCA
( α
4π

)2( µ2
M2

)2ε
S2ε

×

{
1

ε

[
−
5

3
L2+

49

3
L−
10

9
π2−

337

12

]
+
10

9
L3

−
76

9
L2+

(
−4
√
3Cl2

(π
3

)
+
859

18

)
L

}

+O(ε0L0)+O(ε)+O

(
M2

Q2

)
. (66)

The vertex correction in Fig. 3d with gauge and Higgs bo-
son in the loop insertion contains two factors ofM from
the twoWWH-vertices, but these are cancelled by factors
1/M2 in the results of some of the scalar integrals. So this
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vertex correction is not suppressed:

Fv,WH =
( α
4π

)2( µ2
M2

)2ε
S2ε

{
1

ε

[
−
3

2
L+3

]

+

(
2
√
3Cl2

(π
3

)
−3

)
L

}

+O(ε0L0)+O(ε)+O

(
M2

Q2

)
. (67)

The two vertex corrections in Fig. 3e and 3f with Higgs and
Goldstone bosons in the loop insertion yield the same re-
sult (forMH =M):

Fv,Hφ = Fv,φφ =
( α
4π

)2( µ2
M2

)2ε
S2ε

×

{
1

ε

[
1

16
L2+

7

16
L+
π2

24
−
67

64

]
−
1

24
L3

+
17

48
L2+

(
−
3

4

√
3Cl2

(π
3

)
+
19

96

)
L

}

+O(ε0L0)+O(ε)+O

(
M2

Q2

)
. (68)

The contributions involving Higgs and Goldstone bosons
are only valid for the spontaneously broken SU(2) model,
they cannot be transformed e.g. to a U(1) model simply
by setting other values for CF, CA and TF. We have there-
fore written these contributions with the Casimir operators
already replaced by their SU(2) values.

4 Renormalization contributions

Section 3 has treated the evaluation of the vertex correc-
tions which contribute to the Abelian vector form fac-
tor. These have been performed with Feynman rules orig-
inating from the unrenormalized Lagrangian. Therefore
the contributions due to the renormalization of the fields
(Sect. 4.1), the coupling constant (Sect. 4.2) and the gauge
boson mass (Sect. 4.3) have to be added.

4.1 Field renormalization

The renormalization of the two fermion fields in the
Abelian vector current requires the multiplication of the
vertex corrections by a factor of Zf, where (Zf)

1/2 is the
fermion field renormalization constant. On the other hand,
Zf is determined by the fermion self-energy correctionsΣ
at on-shell momentum p2 = 0 (for massless fermions). In
a perturbative expansion, the field renormalization con-
stant is Zf = 1+Σ1+Σ2+O(α3) and the vertex correc-
tions are Fv = 1+Fv,1+Fv,2+O(α3), where the indices
1 and 2 indicate the one- and two-loop contributions,
respectively.

The total Abelian vector form factor up to order α2 can
be written as

F = FvZf

= 1+ Fv,1+Σ1︸ ︷︷ ︸
O(α)

+ Fv,2+Σ2+Fv,1Σ1︸ ︷︷ ︸
O(α2)

+O(α3) .

The two-loop contribution to the form factor is therefore
given by

F2 = Fv,2+Σ2+Fv,1Σ1 , (69)

where Fv,2 is made up of the contributions calculated
in Sect. 3. The one-loop corrections are well known:

Fv,1 = CF
α

4π

(
µ2

M2

)ε
Sε

{
1

ε
−L2+3L−

2

3
π2−4

+ ε

[
1

3
L3−

3

2
L2+

(
−
π2

3
+8

)
L+2ζ3+

7

12
π2

−12

]
+ ε2
[
−
1

12
L4+

1

2
L3+

(
π2

12
−4

)
L2

+

(
−4ζ3−

π2

4
+16

)
L−

13

180
π4+

17

3
ζ3+π

2

−28

]}
+O(ε3)+O

(
M2

Q2

)
, (70)

Σ1 =Σ1(p
2 = 0) = CF

α

4π

(
µ2

M2

)ε
Sε

×

{
−
1

ε
+
1

2
+ ε

[
−
π2

12
+
1

4

]
+ ε2
[
1

3
ζ3+

π2

24
+
1

8

]}

+O(ε3) . (71)

The terms proportional to ε and ε2 are needed when Fv,1
and Σ1 are multiplied by other one-loop contributions
containing 1/ε-poles from ultraviolet singularities or 1/ε2-
poles frommass singularities. The sum F1 = Fv,1+Σ1 con-
stitutes the one-loop form factor, which is finite at ε= 0.
The two-loop self-energy correctionsΣ2 originate from the
Feynman diagrams in Figs. 10, 11 and 12.As for the vertex
corrections, “tadpole” diagrams are omitted because their
contributions are cancelled by the renormalization of the
gauge boson mass.
The self-energy amplitudes Σ̃ are quadratic matrices

both in the spinor and in the isospin space. For massless
fermions of momentum p they are of the form

Σ̃(p) =−i/p1Σ(p2) , (72)

where 1 is the unity matrix in the isospin space. The
self-energy correctionΣ may be extracted from the ampli-

Fig. 10. Fermionic self-energy
correction
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Fig. 11. Abelian self-energy corrections

Fig. 12. Non-Abelian self-energy corrections

tude Σ̃ by the projection

Σ =
i

4Np2
Tr(/pΣ̃) , (73)

where N = 2 for SU(2) and the trace runs over the spinor
and the isospin indices. The projection requires p2 �= 0,
whereas we need the self-energies at p2 = 0. We have there-
fore calculated the loop integrals for an infinitesimally
small, but finite p2. By performing the limit p2→ 0 before
any expansion in ε, no logarithms ln(p2) appear and the
first two coefficients of a simple Taylor expansion of the in-
tegrals with respect to p2 are sufficient. The contribution of
every Feynman diagram to the trace in (73) is proportional
to p2, so no inverse power 1/p2 is left.
The reduction of the self-energy diagrams to scalar in-

tegrals using (73) and the calculation of the integrals was
performed similarly to the vertex corrections. In fact, the
evaluation of the self-energy corrections is much simpler
because they do not depend on Q2, only on M2, and no
expansion by regions is needed. We do not quote further

details of this calculation and list only the total results of
each Feynman diagram.
The fermionic self-energy correction in Fig. 10 has al-

ready been calculated in [22]:

Σnf = CFTFnf
( α
4π

)2 ( µ2
M2

)2ε
S2ε

(
−
1

ε
−
1

2

)
+O(ε) .

(74)

The Abelian contributions to the self-energy correction
originate from Fig. 11a,

ΣT1 =

(
C2F−

1

2
CFCA

)( α
4π

)2( µ2
M2

)2ε
S2ε

×

(
−
1

ε2
+
3

2ε
−
π2

2
+
7

4

)
+O(ε) , (75)

from Fig. 11b,

ΣT2 = C
2
F

( α
4π

)2( µ2
M2

)2ε
S2ε

(
1

2ε2
−
1

4ε
−
π2

12
+
7

8

)

+O(ε) , (76)

and from Fig. 11c, which yields just the square of the one-
loop correction (71). Only the C2F-part of (75) belongs to

the Abelian corrections, the CFCA-part contributes to the
non-Abelian corrections.
The other non-Abelian contributions have been evalu-

ated from Fig. 12a,

ΣT1CA = CFCA
( α
4π

)2 ( µ2
M2

)2ε
S2ε

(
−
3

2ε2
−
5

4ε

)

+O(ε0) , (77)

from the sum of the diagrams with gauge boson and ghost
field loops, Fig. 12b and c,

ΣWWcc = CFCA

( α
4π

)2( µ2
M2

)2ε
S2ε
21

4ε
+O(ε0) ,

(78)

fromFig. 12d with gauge and Higgs boson in the loop inser-
tion,

ΣWH =
( α
4π

)2( µ2
M2

)2ε
S2ε

(
−
3

4ε

)
+O(ε0) , (79)

and, with identical results, from Fig. 12e and Fig. 12f with
Higgs and Goldstone bosons in the loop insertion,

ΣHφ =Σφφ =
( α
4π

)2( µ2
M2

)2ε
S2ε
21

64ε
+O(ε0) . (80)

As for the vertex corrections, the Higgs and Goldstone
boson contributions have been calculated with the approx-
imation MH =M and are only valid in a spontaneously
broken SU(2) model. The evaluation of all non-Abelian
contributions has been limited to the poles in ε because the
non-logarithmic finite term of order ε0 has already been
neglected in the calculation of the corresponding vertex
corrections.
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4.2 Coupling constant renormalization

According to the prescription of the MS scheme, the un-
renormalized coupling constant αbare is replaced by the
renormalized coupling α via

αbare = α

(
1−
α

4π

β0

ε

)
+O(α3) , (81)

where β0 is the one-loop coefficient of the renormaliza-
tion group β-function. β0 gets a non-Abelian contribution
proportional to CA, a fermionic contribution proportional
to nf and a Higgs contribution [74, 75]:

β0 =
11

3
CA−

4

3
TFnf−

1

6
. (82)

As mentioned above, the loop calculations have been per-
formed using the unrenormalized Feynman rules. Intro-
ducing now the renormalized coupling constant and mass
instead of the bare quantities does not change the two-loop
results at order α2. But the coupling and mass in the one-
loop result have to be regarded as the bare parameters and
must be replaced by the renormalized ones.
By applying the substitution (81) to the one-loop form

factor from (70) and (71), we get additional contributions
of order α2, namely

∆FαCA = CFCA
( α
4π

)2( µ2
M2

)ε
Sε

×

{
1

ε

[
11

3
L2−11L+

22

9
π2+

77

6

]
−
11

9
L3

+
11

2
L2+

(
11

9
π2−

88

3

)
L−
22

3
ζ3−

11

6
π2

+
517

12

}
+O(ε)+O

(
M2

Q2

)
, (83)

∆Fαnf = CFTFnf
( α
4π

)2( µ2
M2

)ε
Sε

×

{
1

ε

[
−
4

3
L2+4L−

8

9
π2−

14

3

]
+
4

9
L3−2L2

+

(
−
4

9
π2+

32

3

)
L+
8

3
ζ3+

2

3
π2−

47

3

}

+O(ε)+O

(
M2

Q2

)
, (84)

∆FαHiggs =
( α
4π

)2( µ2
M2

)ε
Sε

×

{
1

ε

[
−
1

8
L2+

3

8
L−
π2

12
−
7

16

]
+
1

24
L3

−
3

16
L2+

(
−
π2

24
+1

)
L+
1

4
ζ3+

π2

16

−
47

32

}
+O(ε)+O

(
M2

Q2

)
. (85)

4.3 Mass renormalization

The relation between the bare gauge bosonmassMbare and
the renormalized massM is determined by the gauge bo-
son self-energy corrections, which have the form

Π̃µν,ab(k) = iδab gµνk2Π(k2)+ terms∝ kµkν (86)

at momentum k. In the on-shell scheme, the square of the
physical, renormalized mass is defined to be the real part
of the pole of the propagator. At one-loop, the relation be-
tweenMbare andM becomes

M2bare =M
2
[
1−ReΠ1(M

2)
]
+O(α2) , (87)

where Π1 is the one-loop contribution to Π. This rela-
tion leads to the following substitutions in the one-loop
result (70) and (71):

(
µ2

M2

)ε
→

(
µ2

M2

)ε [
1+ ε ReΠ1(M

2)
]
+O(α2) ,

(88)

Ln→Ln+nLn−1 ReΠ1(M
2)+O(α2) , (89)

with L = ln(Q2/M2), producing additional contributions
of order α2.
The one-loop gauge boson self-energy receives contribu-

tions from a fermion loop,

Πnf(M
2) = TFnf

α

4π

(
µ2

M2

)ε
Sε

(
−
4

3ε
−
20

9
−
4

3
iπ

)

+O(ε) , (90)

from the non-Abelian gauge boson and ghost field loops,

ΠWWcc(M
2) = CA

α

4π

(
µ2

M2

)ε
Sε

(
17

3ε
−
4π
√
3
+
82

9

)

+O(ε) , (91)

from the loop with gauge and Higgs boson,

ΠWH(M
2) =

α

4π

(
µ2

M2

)ε
Sε

(
−
1

ε
+
π
√
3
−2

)

+O(ε) , (92)

and from the loops with Higgs and Goldstone bosons,

ΠHφ(M
2) =Πφφ(M

2) =

α

4π

(
µ2

M2

)ε
Sε

(
5

12ε
−
π

4
√
3
+
17

18

)
+O(ε) .

(93)

The self-energy diagrams with “tadpoles” have been omit-
ted. They do not depend on the momentum of the gauge
boson, so their contribution to the mass renormalization
cancels exactly the corresponding vertex correction and
field renormalization diagrams which have already been
dropped out before.
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Applying the substitutions (88) and (89) to the one-
loop form factor, the self-energy corrections (90)–(93) pro-
duce the following contributions to the two-loop form
factor:

∆FMnf = CFTFnf
( α
4π

)2( µ2
M2

)2ε
S2ε

{
1

ε

[
8

3
L−4

]

+
40

9
L+
4

3
π2−

38

3

}
+O(ε)+O

(
M2

Q2

)
, (94)

∆FMWWcc = CFCA
( α
4π

)2( µ2
M2

)2ε
S2ε

{
1

ε

[
−
34

3
L+17

]

+

(
8π
√
3
−
164

9

)
L−4

√
3π−

17

3
π2

+
317

6

}
+O(ε)+O

(
M2

Q2

)
, (95)

∆FMWH =
( α
4π

)2( µ2
M2

)2ε
S2ε

{
1

ε

[
3

2
L−
9

4

]

+

(
−
1

2

√
3π+3

)
L+
3

4

√
3π+

3

4
π2−

63

8

}

+O(ε)+O

(
M2

Q2

)
, (96)

∆FMHφ =∆F
M
φφ =

( α
4π

)2( µ2
M2

)2ε
S2ε

{
1

ε

[
−
5

8
L+
15

16

]

+

(
1

8

√
3π−

17

12

)
L−

3

16

√
3π−

5

16
π2

+
113

32

}
+O(ε)+O

(
M2

Q2

)
. (97)

5 Results and discussion

The individual results have been presented in the previ-
ous sections so that we can now add them together. Ac-
cording to the MS prescription, the factor Sε = (4π)

εe−εγE

is absorbed into µ2ε by a redefinition of µ, and we have
chosen µ=M so that the whole prefactor (µ2/M2)εSε or

(µ2/M2)2εS2ε is replaced by 1. The dependence of the form
factor on µ can easily be restored by looking at the running
of the coupling α, parametrized by β0, in the one-loop form
factor. We give the results in d = 4 dimensions (ε = 0) in
the Sudakov limit Q2�M2.
The fermionic contribution to the Abelian vector form

factor is obtained from (5), (74), (84) and (94) [22]:

F2,nf = Fv,nf +Σnf+∆F
α
nf
+∆FMnf

= CFTFnf
( α
4π

)2

×

{
−
4

9
L3+

38

9
L2−

34

3
L+
16

27
π2+

115

9

}
,

(98)

with L = ln(Q2/M2). For the Abelian contributions only
theC2F part ofFv,NP, Fv,BE andΣT1 is considered. The ver-
tex corrections Fv,BE and Fv,fc have to be counted twice
because two horizontally mirrored diagrams exist for each
of these. The result follows from equations (14), (26), (39),
(49), (70), (71), (75) and (76) [27]:

F2,C2
F
= Fv,LA+Fv,NP|C2

F
+2Fv,BE|C2

F
+2Fv,fc

+ΣT1|C2
F
+ΣT2+(Σ1)

2+Fv,1Σ1

= C2F

( α
4π

)2 {1
2
L4−3L3+

(
2

3
π2+8

)
L2

−
(
−24ζ3+4π

2+9
)
L+256Li4

(
1

2

)

+
32

3
ln4 2−

32

3
π2 ln2 2−

52

15
π4+80ζ3

+
52

3
π2+

25

2

}
. (99)

For the non-Abelian contributions proportional to CFCA
the remaining part of Fv,NP, Fv,BE and ΣT1 is con-
sidered together with the purely non-Abelian results
from (60), (66), (77), (78), (83) and (95):

F2,CFCA =
[
Fv,NP+2Fv,BE+ΣT1

]
CFCA

+2Fv,BECA+Fv,WWcc+ΣT1CA+ΣWWcc

+∆FαCA+∆F
M
WWcc

= CFCA
( α
4π

)2 {11
9
L3−

(
−
π2

3
+
233

18

)
L2

+

(
4
√
3Cl2

(π
3

)
+
8π
√
3
−
88

3
ζ3+

11

9
π2

+
193

6

)
L

}
+O(L0) . (100)

The Higgs contribution results from (67), (68), (79), (80),
(85), (96) and (97):

F2,Higgs = Fv,WH+Fv,Hφ+Fv,φφ+ΣWH+ΣHφ+Σφφ

+∆FαHiggs+∆F
M
WH+∆F

M
Hφ+∆F

M
φφ

=
( α
4π

)2 {
−
1

24
L3+

25

48
L2−

(
−
1

2

√
3Cl2

(π
3

)

+
1

4

√
3π+

π2

24
+
23

16

)
L

}
+O(L0) . (101)

The two non-Abelian contributions F2,CFCA and F2,Higgs
depend on the Feynman–’t Hooft gauge in which they have
been calculated. Only their sum is gauge invariant:

F2,CFCA+Higgs = F2,CFCA+F2,Higgs

=
( α
4π

)2 {43
24
L3−

(
−
π2

2
+
907

48

)
L2

+

(
13

2

√
3Cl2

(π
3

)
+
15

4

√
3π−44ζ3

+
43

24
π2+

749

16

)
L

}
+O(L0) , (102)
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where the values CF = 3/4 andCA = 2 for the SU(2) gauge
group have been used. Adding all contributions together,
the two-loop form factor is given by [33]

F2 = F2,nf +F2,C2F
+F2,CFCA+Higgs

=
( α
4π

)2{ 9
32
L4+

(
5

48
−
nf

6

)
L3

+

(
7

8
π2−

691

48
+
19

12
nf

)
L2+

(
13

2

√
3Cl2

(π
3

)

+
15

4

√
3π−

61

2
ζ3−

11

24
π2+

167

4
−
17

4
nf

)
L

}

+O(L0) . (103)

The coefficients of the first three logarithms L4, L3 and L2

agree with the NNLL prediction of the evolution equation
approach [11, 12]. The coefficient of the linear logarithm is
a new result.
Let us have a look at the numerical size of the coef-

ficients in the individual contributions. For the fermionic
contribution we set nf = 6 for 3 lepton and 3×3 quark dou-
blets from which only the left-handed degrees of freedom
couple to the gauge bosons.

F2,nf ≈
( α
4π

)2 (
−1.0L3+9.5L2−26L+42

)
,

F2,C2
F
≈
( α
4π

)2 (
0.3L4−1.7L3+8.2L2−11L+15

)
,

F2,CFCA+Higgs

≈
( α
4π

)2 (
1.8L3 −14L2+43L+ ...

)
.

(104)

We notice that all three contributions show a similar pat-
tern of coefficients with alternating signs and growing size.
At a typical energy in the TeV range, Q = 1TeV, using
M = 80GeV and α/(4π) = 0.003 as rough values for the
weak interaction, the individual logarithmic terms have
the following numerical size in per mil (1/1000):

L4 L3 L2 L1 L0

F2,nf → −1.2 +2.2 −1.2 +0.4 ,

F2,C2
F
→+1.6 −2.0 +1.9 −0.5 +0.1 ,

F2,CFCA+Higgs→ +2.1 −3.2 +2.0 + ...
(105)

The pattern of growing coefficients with alternating signs
produces large cancellations between the terms of differ-
ent powers of logarithms and also between F2,nf , F2,C2F

and

F2,CFCA+Higgs. In each line of (105), the largest term is
reached at the quadratic or (for F2,C2

F
) already at the cubic

logarithm. The linear-logarithmic term is less significant
and, at least for the fermionic and the Abelian part, the
non-logarithmic constant is again smaller by a factor of 3 or
more. For the sum of the three contributions,

L4 L3 L2 L1

F2→+1.6 −1.0 +0.9 +0.3 , (106)

the logarithmic terms are monotonically decreasing in size
already from L4 on. Due to the cancellations between the
individual contributions (105), the non-logarithmic con-
stant of F2,nf is larger than the total linear-logarithmic

term in (106). But the logarithmic terms in all contribu-
tions and in the total form factor are getting significantly
smaller from the linear logarithm on. So we do not expect
the neglected non-logarithmic constant of the total result
to be larger than the total linear-logarithmic term. This
leads us to the conclusion that the N3LL result with all
logarithmic terms approximates well the full result.
Figure 13 illustrates the behaviour of the successive log-

arithmic approximations, starting from the LL approxima-
tion with only the L4 term and adding one after the other
the smaller powers of logarithms.
The result presented here relies on the approximation

that the Higgs mass is equal to the gauge boson mass,
MH =M . In order to investigate the dependence of the
form factor on the Higgs mass, we have also calculated the
Higgs contributions in the hypothetical case of a vanishing
Higgs mass,MH = 0. Then (101) becomes

F
MH=0
2,Higgs =

( α
4π

)2 {
−
1

24
L3+

25

48
L2−

(
3

4

√
3Cl2

(π
3

)

−
1

8

√
3π−

3

16
π2+

25

16

)
L

}
+O(L0) . (107)

Only the coefficient of the linear logarithm differs be-
tween (101) and (107). The coefficients of the cubic and
quadratic logarithms are the same, they do not depend on
the Higgs boson mass and have already been determined in
the evolution equation approach [11, 12]. By settingMH =
0, the coefficient of the linear logarithm of F2,CFCA+Higgs
in (104) numerically changes from 43 to 45, and the con-
tribution of this term in (105) is shifted from 2.0 to 2.1.
So the variation of the N3LL form factor between the two
casesMH =M andMH = 0 is smaller than the total linear-
logarithmic contribution by a factor of 3. On this basis we
expect the deviation of the form factor with the true Higgs

Fig. 13. Two-loop contribution to the Abelian vector form
factor F2 in successive logarithmic approximations, using the
valuesM = 80GeV and α/(4π) = 0.003
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mass from our result to be comparable to the neglected
non-logarithmic constant.
Altogether we estimate the accuracy of our form factor

result to be of the order of the linear-logarithmic contri-
bution, i.e. about half a per mil with respect to the Born
result.
The result for the Abelian vector form factor presented

in (103) has been combined in [33, 34] with the reduced
amplitude from (1) in order to obtain the four-fermion
scattering amplitude in the spontaneously broken SU(2)
model in N3LL accuracy. In addition predictions for the
electroweak model have been obtained by separating the
infrared-divergent electromagnetic contributions (cf. Ap-
pendix D) and by expanding in the mass difference be-
tween the W - and Z-bosons. For a discussion of this pro-
cedure and of the accuracy of the electroweak corrections
we refer to [33, 34].

6 Summary

In the present paper we have discussed in detail the cal-
culation of the two-loop corrections to the Abelian vector
form factor in a spontaneously broken SU(2) model. The
result was obtained in N3LL accuracy and contains all log-
arithmically enhanced terms. It enables the derivation of
electroweak corrections to four-fermion processes with an
error of a few per mil to one percent, thus coping with the
expected experimental accuracy at a future linear collider.
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Appendix A: Feynman rules

This appendix lists the Feynman rules of the vertices which
are needed for the calculation of the form factor, as they
follow from the Lagrangian of the spontaneously broken
SU(2) gauge model described in Sect. 2.
The gauge boson fields of massM =MW are W

a
µ , a=

1, 2, 3 (with Lorentz vector index µ). To each W a corres-
ponds a ghost field ca (and antighost c̄a) and a Goldstone
boson φa, one of the unphysical components of the Higgs
doublet. In the Feynman–’t Hooft gauge used by us, there
is Mc =Mφ =MW. The physical Higgs bosonH has the
massMH. Finally, ψ denotes a fermion (lepton or quark)
doublet of Dirac spinors, and g is the weak SU(2) coupling.
Vertices involving four fields and vertices without

a gauge boson do not appear in our present calculation and
are omitted here.

Gauge boson coupling to fermions

Gauge boson self-coupling

Gauge boson coupling to ghost fields

Gauge boson coupling to Higgs and Goldstone
bosons

In contrast to the other vertices above, which can be used
in any SU(N) gauge model, the couplings involving Higgs
and Goldstone bosons are only valid for the spontaneously
broken SU(2) model.

Appendix B: Expansion by regions

The asymptotic expansion of Feynman integrals in lim-
its typical of Euclidean space is given by well-known pre-
scriptions as a sum over certain subgraphs [76–80]. How-
ever, the Sudakov limit we are dealing with is typical
of Minkowski space. Still for some special cases, similar
graph-theoretical prescriptions were obtained [57, 81, 82].
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In particular, as it was shown in [57], they can be applied
to expand the planar two-loop diagram of Fig. 2a in the Su-
dakov limit.
The bad news is that for other relevant diagrams,

such as the non-planar and the Mercedes–Benz diagrams,
graph-theoretical prescriptions are not available. The good
news is that one can apply here (and for any other limit)
the strategy of expansion by regions [52, 58, 83, 84] which
consists of the following prescriptions:

– Divide the space of the loop momenta into various re-
gions and, in every region, expand the integrand in
a Taylor series with respect to the parameters that are
considered small there.
– Integrate the integrand, expanded in the appropriate
way in every region, over the whole integration domain
of the loop momenta.
– Set to zero any scaleless integral.

To apply this strategy to a given limit one should first
understand, using various examples, which regions are rel-
evant to it. In the Sudakov limit under consideration, these
are the following regions, for a loop momentum k:

hard (h): k ∼Q ,

1-collinear (1c): k+ ∼
M2

Q
, k− ∼Q , k⊥ ∼M ,

2-collinear (2c): k+ ∼Q , k− ∼
M2

Q
, k⊥ ∼M ,

soft (s): k ∼M ,

ultrasoft (us): k ∼
M2

Q
.

By k ∼ Q etc. we mean that any component of the vec-
tor k is of orderQ, and k±, k⊥ are the components of k
defined after (8). In other versions of the Sudakov limit, ul-
tracollinear regions can also participate [84], but they are
irrelevant to the present version.
So we obtain with this strategy the asymptotic expan-

sion of our integrals as a sum of contributions generated by
various regions. For brevity, we omit the word “generated”
and speak about contributions of regions, although the in-
tegration in each contribution is performed over the whole
space of the loop momenta.
In fact, this strategy is a generalization of the ori-

ginal strategy based on similar regions [39, 41, 44], where
the cut-offs specifying the regions were not removed so
that the integrations were bounded by the regions under
consideration.

Appendix C: Mellin–Barnes representation

The Mellin–Barnes representation is a powerful tool for
solving two closely related problems: a) The calculation of
Feynman integrals. b) The asymptotic expansion of Feyn-
man integrals in various kinematical limits.
The basic identity of the Mellin–Barnes representation

is the following (valid for | argX−argY |< π):

1

(X+Y )λ
=
1

Γ (λ)

∫ i∞
−i∞

dz

2πi
Γ (−z)Γ (λ+ z)

Y z

Xλ+z
.

(C.1)

It replaces a sum raised to any power by individual fac-
tors which are raised to powers depending on the Mellin–
Barnes parameter z. This simplification of the structure is
obtained at the cost of an additional integration. The in-
tegration contour in the Mellin–Barnes integrals runs from
−i∞ to +i∞ and is chosen in such a way that poles from
gamma functions of the form Γ (...+ z) lie on the left hand
side of the contour (“left poles”) and poles from gamma
functions of the form Γ (...−z) lie on the right hand side of
the contour (“right poles”). The contour cannot always be
chosen as a straight line, especially if Reλ < 0.
If |X|< |Y |, the integration contour can be closed on

the left hand side at Re z =−∞, and the integral is given
by the sum over the residues at the left poles. This sum
corresponds to the Taylor expansion of 1/(X+Y )λ for
|X|< |Y |. On the other hand, if |X|> |Y |, the contour can
be closed on the right hand side at Re z=+∞, and the sum
over the residues at the right poles corresponds to the Tay-
lor expansion for |X|> |Y |. In the limiting case |X|= |Y |
the Mellin–Barnes integral is also convergent and is given
by the sum of the residues on either the left or the right side
of the contour – provided that these sums converge, which
is often the case, especially when more than two gamma
functions are present.
The first application of the Mellin–Barnes representa-

tion was, probably, in [85]. The simplest possibility of using
it is to transformmassive propagators (X = k2, Y =−M2)
into massless ones (see e.g. [86–88] as early references).
In general, one starts from Feynman, alpha or Schwinger
parameters and uses the Mellin–Barnes representation to
separate arbitrary terms raised to some powers in such
a way that the resulting parametric integrals can be calcu-
lated in terms of gamma functions (see e.g. [89–92]). In the
context of dimensional regularization, when the explicit
evaluation at general values of d = 4–2 ε is hardly pos-
sible and one is oriented at calculating Feynman integrals
in a Laurent expansion in ε, the systematic evaluation by
Mellin–Barnes representations was initiated in [93, 94]. An
essential step of the evaluation procedure is the resolution
of singularities in ε, with the goal to represent a given mul-
tiple Mellin–Barnes integral as a sum of integrals where
the Laurent expansion of the integrands becomes possible.
This is achieved by taking residues and shifting contours.
Two different strategies for implementing this step were
suggested in [93] and [94], respectively.
The identity (C.1) is valid for all powers λ. In fact,

the crucial point is not the convergence of the integral in
the basic identity (C.1), but the interchange of the order
of integrations between the Mellin–Barnes integral and
the (Feynman, alpha or Schwinger) parameter integrals.
The necessary convergence of the parameter integrals re-
stricts the real part of the Mellin–Barnes parameter z to
a specific range. If this range has a non-empty overlap
with the interval (−Reλ, 0), the integration contour over z
can be chosen as a straight line parallel to the imagi-
nary axis within the allowed range on the real axis. One
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can find values for the power λ and other parameters such
that an allowed range for the real part of z exists. The
analytic continuation to the desired parameter values is
then obtained by accounting for the residues which cross
the fixed integration contour when the parameter values
are smoothly changed [94]. Alternatively, the contour of
the Mellin–Barnes integration can be deformed in such
a way that it separates the poles of gamma functions with
a “+z” dependence from the ones with a “−z” depen-
dence even for the desired parameter values [93]. Not only
the gamma functions from the Mellin–Barnes representa-
tion (C.1), but also the ones introduced by the evaluation
of the parameter integrals have to be considered here. As
long as the prescription following (C.1) for the integration
contour is respected, the convergence of the integrals is
provided and all residues are accounted for on the correct
side of the contour. This is still true if multiple Mellin–
Barnes integrals are introduced by the iterated applica-
tion of (C.1). Even when λ is a non-positive integer and
Γ (λ) in the denominator gets singular, the right hand side
of (C.1) is given by the limit where λ approaches its ac-
tual value. In this case only a finite number of residues give
non-vanishing contributions and reproduce the Binomial
formula for (X+Y )|λ|.
Often the Mellin–Barnes representation is used for

asymptotic expansions (see e.g. [89–92, 95, 96]). When the
Mellin–Barnes integral contains the factor tz with some pa-
rameter t, the asymptotic expansion in the limit t→ 0 is
given by picking up the residues on the right hand side of
the integration contour. The asymptotic expansion in the
limit t→∞ is given by the residues on the left hand side
of the contour. By expanding tz in z about the poles of the
integrand, the explicit form of the asymptotic expansion
in powers of t and ln t with coefficients from the Laurent
expansion of the Mellin–Barnes integrand can easily be ob-
tained [96]. In practice, however, the most adequate way
to perform the asymptotic expansion depends on the spe-
cific problem. For the work presented in this paper we have
applied the method of expansion by regions (Appendix B)
and used Mellin–Barnes representations in the purpose
of asymptotic expansion as a cross-check. When calculat-
ing scalar integrals for general propagator powers ni as
in Sect. 3, the leading contributions can be obtained from
the Mellin–Barnes representation by taking the residue at
the first pole of each gamma function on the correct side of
the integration contour. It turned out that in many cases
the expressions obtained by the expansion of the loop inte-
gral within the expansion by regions method were simpler
than the expressions extracted from the Mellin–Barnes
representation of the full integral.
If the Mellin–Barnes representation is applied to the

calculation of Feynman integrals (in particular, of indi-
vidual contributions in an asymptotic expansion, as in
the present work), when no large or small parameter t is
present as tz in the Mellin–Barnes integrals or when the
full dependence on t is desired, all residues on one side of
the integration contour have to be considered and summed
up. Some integrations in multiple Mellin–Barnes integrals
can be performed explicitly by the application of identities
based on the first Barnes lemma [97],

∫ i∞
−i∞

dz

2πi
Γ (λ1+ z)Γ (λ2+ z)Γ (λ3− z)Γ (λ4− z)

=
Γ (λ1+λ3)Γ (λ1+λ4)Γ (λ2+λ3)Γ (λ2+λ4)

Γ (λ1+λ2+λ3+λ4)
,

(C.2)

or on the second Barnes lemma [98],
∫ i∞
−i∞

dz

2πi

Γ (λ1+ z)Γ (λ2+ z)Γ (λ3+ z)

Γ (λ1+λ2+λ3+λ4+λ5+ z)

×Γ (λ4− z)Γ (λ5− z)

=
Γ (λ1+λ4)Γ (λ1+λ5)Γ (λ2+λ4)Γ (λ2+λ5)

Γ (λ1+λ2+λ4+λ5)Γ (λ1+λ3+λ4+λ5)

×
Γ (λ3+λ4)Γ (λ3+λ5)

Γ (λ2+λ3+λ4+λ5)
(C.3)

(see a collection of such formulae in Appendix D of [56]).
Mellin–Barnes integrals develop singularities when

a left pole and a right pole glue together in one point for
some limit, e.g. ε→ 0 from dimensional regularization.
These singularitities are directly present in the formu-
lae (C.2) and (C.3) of the first and second Barnes lemma.
In more complicated cases, it is usually a good idea to first
extract the potentially singular residues by shifting the in-
tegration contours [93] or by an analytic continuation as
described above and in [94]. Then the integrand may be
expanded in the desired limits of its parameters. For an an-
alytical result the residues on one side of the integration
contour are summed up with the help of computer algebra
programs, summation tables (see e.g. [56]) or algorithms
like [65, 66].
Characteristic examples of recent sophisticated calcula-

tions based on the technique of Mellin–Barnes representa-
tions can be found in [99, 100]. These results were crucial
to check (in [100]) cross order relations inN = 4 supersym-
metric Yang–Mills theory conjectured in [101]. Very recent
results on checking the iteration structure in this theory
with the help of Mellin–Barnes representations have been
obtained in [102–104].
Also recently algorithms for the automatic evaluation

of Mellin–Barnes integrals have been formulated [105, 106].
These rely on the strategy of [94] for the analytic continua-
tion in the parameter ε. The algorithms provide a basis for
the analytic evaluation, and at least they can be applied, in
their present form, to the numerical evaluation. The algo-
rithm of [106] is already implemented in Mathematica and
would have been applied by us at least for numerical checks
if it had existed early enough.

Appendix D: Contributions in a theory
with a mass gap

The separation of the infrared-divergent electromagnetic
contributions as described in [27] requires the two-loop cor-
rections in the combined SU(2)×U(1) or U(1)×U(1) the-
ory with massive and massless gauge bosons. In addition
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to the results presented in Sect. 3 and Sect. 4 of this pa-
per, two-loop vertex and self-energy corrections with one
massive SU(2) or U(1) gauge boson and one massless U(1)
gauge boson are needed.
As we regard an SU(2)×U(1) model without mixing

between the two gauge groups (see [33, 34] for a discussion
of this aspect), only the Abelian vertex and self-energy di-
agrams (Figs. 2 and 11) contribute. After replacing one of
the two massive SU(2) gauge bosons in these diagrams by
a massless U(1) gauge boson, we obtain the results listed in
the following paragraphs.
The planar vertex correction of the diagram in Fig. 2a

with line 5 (cf. Fig. 4) massless is

F
M5=0
v,LA = CF

αα′

(4π)2

(
µ2

M2

)2ε
S2ε

×

{
−
2

ε3
+
1

ε2

[
2L2−4L+

4

3
π2+

9

2

]
+
1

ε

[
−
4

3
L3

+4L2+

(
2

3
π2−17

)
L+12ζ3−

7

3
π2+

85

4

]

+
2

3
L4−

8

3
L3+

(
π2

3
+17

)
L2

+

(
−36ζ3+

2

3
π2−

101

2

)
L+
107

90
π4+

184

3
ζ3

−
59

12
π2+

599

8

}
+O(ε)+O

(
M2

Q2

)
, (D.1)

where α and α′ are the couplings of the SU(2) and U(1)

gauge groups, respectively, and L= ln(Q2/M2). The 1/ε3

pole is due to the infrared divergence. The same diagram
with line 6 massless yields the contribution

F
M6=0
v,LA = CF

αα′

(4π)2

(
µ2

M2

)2ε
S2ε

×

{
1

2ε2
+
1

ε

[
−L2+3L−

2

3
π2−

11

4

]
+
1

6
L4

+

(
2

3
π2−1

)
L2+

(
−24ζ3−π

2+
11

2

)
L

+
13

45
π4+46ζ3+

13

12
π2−

41

8

}

+O(ε)+O

(
M2

Q2

)
. (D.2)

Note that only the linear logarithm and the non-loga-
rithmic constant at order ε0 of this result differ from the
case (14) with two massive gauge bosons (and, of course,
the different prefactor CF αα

′ instead of C2F α
2).

When either of the two gauge bosons in the non-planar
vertex diagram of Fig. 2b is massless (cf. Fig. 5 for the line
numbering), the contribution is

F
M5=0
v,NP = F

M6=0
v,NP = CF

αα′

(4π)2

(
µ2

M2

)2ε
S2ε

×

{
1

ε

[
−
2

3
L3+4L2−12L−12ζ3+π

2+14

]

+
1

2
L4−4L3+

(
−
5

3
π2+22

)
L2

+

(
56ζ3+

11

3
π2−68

)
L−
67

90
π4−90ζ3

−4π2+96

}
+O(ε)+O

(
M2

Q2

)
. (D.3)

The Mercedes–Benz graph in Fig. 2c gives the contribution

FM3=0v,BE = CF
αα′

(4π)2

(
µ2

M2

)2ε
S2ε

×

{
1

2ε2
+
1

ε

[
−L2+

(
−
2

3
π2+7

)
L+4ζ3+

π2

3

−
53

4

]
+L3+

(
2

3
π2−9

)
L2

+

(
−4ζ3−3π

2+
89

2

)
L−
13

90
π4+16ζ3

+
79

12
π2−

655

8

}
+O(ε)+O

(
M2

Q2

)
, (D.4)

when line 3 (cf. Fig. 6) is massless, and

F
M4=0
v,BE = CF

αα′

(4π)2

(
µ2

M2

)2ε
S2ε

{
−
2

ε3
+
1

ε2

[
2L−

5

2

]

+
1

ε

[
−2L2+7L−

π2

3
−
53

4

]
+
4

3
L3

+

(
π2

3
−9

)
L2+

(
8ζ3−

7

3
π2+

73

2

)
L

+
11

45
π4−

32

3
ζ3+

17

4
π2−

479

8

}

+O(ε)+O

(
M2

Q2

)
, (D.5)

when line 4 is massless.
The vertex correction with fermion self-energy of the

diagram in Fig. 2d yields

F
M3=0
v,fc = CF

αα′

(4π)2

(
µ2

M2

)2ε
S2ε

{
2

ε3
+
1

ε2

[
−2L+

5

2

]

+
1

ε

[
2L2−7L+

π2

3
+
53

4

]
−
4

3
L3+7L2

+

(
π2

3
−
53

2

)
L−
40

3
ζ3−

13

12
π2+

355

8

}

+O(ε)+O

(
M2

Q2

)
, (D.6)
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with line 3 (cf. Fig. 7) massless and

FM5=0v,fc = CF
αα′

(4π)2

(
µ2

M2

)2ε
S2ε

{
−
1

2ε2

+
1

ε

[
L2−3L+

2

3
π2+

13

4

]
−L3+5L2

−
33

2
L−4ζ3+

π2

12
+
163

8

}

+O(ε)+O

(
M2

Q2

)
, (D.7)

with line 5 massless. The only difference of (D.7) with re-
spect to the purely massive result (49) is in the non-loga-
rithmic constant at order ε0.
The self-energy diagram in Fig. 11a contributes

Σ
M2=0
T1 =ΣM3=0T1 = CF

αα′

(4π)2

(
µ2

M2

)2ε
S2ε

(
1

2ε
−
3

4

)

+O(ε) , (D.8)

when either of its two gauge bosons is massless. The two
contributions of the self-energy diagram in Fig. 11b are

Σ
M2=0
T2 = CF

αα′

(4π)2

(
µ2

M2

)2ε
S2ε

(
−
1

2ε2
+
3

4ε
−
π2

4
−
1

8

)

+O(ε) , (D.9)

with the gauge boson in the outer loop massless, and

Σ
M4=0
T2 = CF

αα′

(4π)2

(
µ2

M2

)2ε
S2ε

(
1

2ε2
−
1

4ε
+
π2

4
−
1

8

)

+O(ε) , (D.10)

with the gauge boson in the inner loop massless. Note
that (D.10) differs from the purely massive result (76) only
at order ε0.
The self-energy diagram in Fig. 11c) has no corres-

ponding contribution with one massive and one massless
gauge boson, because these integrals vanish in dimensional
regularization.
According to (69), the product of the massless one-loop

vertex correction FM=0v,1 and the (massive) one-loop self-

energy correction Σ1 (71) is needed as well. The missing
piece is well known:

FM=0v,1 =
α′

4π

(
µ2

Q2

)ε
Sε

{
−
2

ε2
−
3

ε
+
π2

6
−8

+ε

(
14

3
ζ3+

π2

4
−16

)}
+O(ε2) .

(D.11)

The prefactor has to be expanded as

(
µ2

Q2

)ε
=

(
µ2

M2

)ε (
1− εL+

ε2

2
L2−

ε3

6
L3
)
+O(ε4)

in order to match the prefactor of the other contributions.
The contributions to the SU(2)×U(1) form factor with

one massive and one massless gauge boson may now be
added together in analogy with (99):

F2,αα′ = F
M5=0
v,LA +F

M6=0
v,LA +F

M5=0
v,NP +F

M6=0
v,NP

+2FM3=0v,BE +2F
M4=0
v,BE +2F

M3=0
v,fc +2FM5=0v,fc

+ΣM2=0T1 +ΣM3=0T1 +ΣM2=0T2 +ΣM4=0T2

+FM=0v,1 Σ1

= CF
αα′

(4π)2

(
µ2

M2

)2ε
S2ε

{

1

ε2

[
2L2−6L+

4

3
π2+7

]
+
1

ε

[
−
8

3
L3+12L2

+

(
−
2

3
π2−32

)
L−4ζ3+π

2+34

]

+
11

6
L4−11L3+

(
−
π2

3
+49

)
L2

+
(
60ζ3−3π

2−111
)
L+
17

90
π4−102ζ3

+
47

6
π2+117

}
+O(ε)+O

(
M2

Q2

)
. (D.12)

The infrared-convergent two-loop interference term of
equation (6) in [27] results from (D.12) after subtraction
of the massive times the massless one-loop form factor:
F2,αα′ − (Fv,1+Σ1)F

M=0
v,1 .
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22. B. Feucht, J.H. Kühn, S. Moch, Phys. Lett. B 561, 111
(2003)

23. A. Denner, M. Melles, S. Pozzorini, Nucl. Phys. B 662, 299
(2003)

24. M. Beccaria, F.M. Renard, C. Verzegnassi, Nucl. Phys. B
663, 394 (2003)

25. M. Beccaria, M. Melles, F.M. Renard, S. Trimarchi,
C. Verzegnassi, Int. J. Mod. Phys. A 18, 5069 (2003)

26. S. Pozzorini, Nucl. Phys. B 692, 135 (2004)
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